Ext Designer for Ext JS 4

User’s Guide

Table of Contents

TabIle Of CONTENTS « ¢« c ¢ v vt vttt ettt ettt ettt et e e et e et et 1
I OUGCTION « « v v v v v et e e 5
Chapter 1 Get’[ing Started with DESIgNEr « v e v e e 7
NaVIGAtING DESIGNEr -« « « « « « v vt ettt ettt et 7
TOOIDOK -+« « « v v e e e e e e e 8
CANVAS -+« « « v v e et et et e e e 8
COMPONENLS 1A« -« -+« + « + e e e ettt ettt et 8
COMPONENt CONFIG INSPECTON « -+« « « -+« « t e ettt ettt ettt 8
DAt SIOrES INSPECIOr « « + « « + « + + v e ettt ettt et ettt e e 8
SROMCULS =« « « =« « e e e e e et e e e e e e e e e e e 9
Anatomy of @ Ul Created With DESIGNET- « « « « « « « -+« « e ettt ettt ettt 9
Laying OUt Ul COMPONENTS: « « « « « + « «« t o ettt ettt ettt ettt et 9
ADAING COMPONENLS -« « -+« « -+« et ettt ettt et ettt 9
POSItIONING COMPONENLS -« « « « « + + « + + + t e e ettt ettt ettt ettt 10
LAYOUL OPHIONS « « + « « « « + + e e et e e ettt e e e e e e 12
ConfIguANG COMPONENTS -« « « + « vt ettt ettt ettt 12
USING TEMPIAEES - « « - -+« « v e e e e e ettt e ettt e 14
CONNECHNG 10 DA -+« + « -+« « e e et ettt et ettt 15
EXPOItING 8 PrOJECE: - « « « « + v e e vt ettt ettt 17
Attaching Event Handlers to Ul COMPONENTS « « -+« « « « «««x ettt et ettt 18
AJIIONAl INFOMMALION - - « - - ¢« v v v ettt e e e e e e e e e e e e e e e e e 18
Chapter 2: Working with Layouts ... 19
BaSIC CONTAINET LAYOULS « « « « + + + « + + + v o e et ettt et ettt et 19
N R 19
ADSOIULE « « « « « « « e e e e e e e e e e e e e 19

0 Yoo o [To = PRSP 20
3 Yo! a7} 2 20
BOIEI « « « « v e e et e e 20
7= e TS 20
(070 [UT0 a8 T 20

e v e e et e e e e e e e e e 21

Table of Contents Page |

T Yoy 21
WIDOX « « + + o e e et et e e e e e 21
NESTEA LAYOULS -« « + « + « + « o+ et ettt e e ettt ettt e e 21
FIBXIDIE BOX LAYOULS: « « + « « « + + + « + e e e e e ettt e e ettt et e e e et 21
Stretching COMPONENTS 10 Fit « -+« « « « « + e v vttt e ettt 23
Configuring the Layout for @ CONTAINET - « - « -+« « -« v v e ettt 23
Using CardLayout 10 Create @ WIZard - « « « « -« « ««« v e et rne ettt ettt 24
Using Border Layout fOr @ VIBWPOt: -« « « « « « -+« +« e et ue ettt ettt 27
Using hbox Layout to Create MUIIPIE COIUMNS: « « « « « « ««««« v v v rne e ettt ettt 28
Chapter 3: Component OVEBIVIBW « « v v v e te ettt e e e et e e et e 30
ADAING COMPONENES 10 8 UL+« « « + + + + e et ettt ettt e et 30
CONAINGIS OVEIVIGW « « « « « + « v e e ettt e e e e e e e e e e e e e e 31
CONTAINEE =+« + « o e e et et e e e e e e e e e e e 31
FIGIACONTAINGE - « « « « « + e e e e ettt e e e e e e e e 31
FIEIOSEE: « « « v v o v v e et et e e e 32
FOMM PANEI- -+« « « e o e ettt e e e e e e e e 32
PANGI -« + « o e e e e e e 33
TAD PANGL - -+« « « e e et e e e 33
VIBWIDO -« + + + e e et et e e e e 34
WVINGOW: « « + « v e et e e e e e e e e e e e e e e e 34
(0772 T = R 35
CRArt AXIS OVEIVIEW: « « « + « <« e ettt e e e e e e e e e e e e e e e e 35
CALEGOIY AXIS « + + + « -+ + e e ettt et e 35
GAUGE AXIS « + ++ + v v oo e et 35
NUMIEHC AXIS - « « « « « « v v e e ettt e e e e e e e e e e e e e 35
RAGIAI AXIS - « « « « -+« o v e ettt e e e e e 35
CRArt SEHES OVEIVIBW « « « « « « « e e e e ettt e e e e e e e e e e e e 35
ATEA SBHIES: « « « « « « o v v e et e e e 36
BAr SEIIES: « + « « -+ v o v e ettt e e e e 36
COIUMIN SIS« « -+« « « v e e e et et e e e e e e e e 36
GAUGE SEIIES -+« « « v oo e e ettt et 36
LINE SOIIES <« « « v« e e e e ettt e e e 36
IO SEIIES « « « « « v v e e e e e e e e 36
RAGAN SEHES -+« « « « v v v e ettt e e e e e e 36
SOAHEI SEIIES « « « -+« v e e e ettt e e e e 36
CRAIt LEGENG -+« « « + v e vt ettt et et e 37
FOIM FIBIAS OVEBIVIBW: « « « « « « « < e e ettt e 37
CRECKIIOX: « « + + « o v e e et e et e e e e e e e e 37
CRECKIIOX GIOUD: « + + + + + + + + e e e e e et e e e e e e e e e e e 37
COMDOBOX: « « + « « + + e et et e e e e e e e e e e e 37
DALE FIOIG - « v v e e ettt e e e e 38
DISPIAY FIEIT: « -+« + v v v e e et e 38
FIlE UPIOBA - « « « + + « e e e et e ettt et e et e 38
T e = oI T o S 38
I T o 1 o) 2SS 38

Table of Contents Page Il

YT e = 39
N TET R o g = 1= L 39
= T [T 39
RAAIO GIOUD « -+« + « + o e e et e e e et e et ettt e 39
S 1 1= 39
TEXE AAFBA « « « « v v v e e et et e e e 40
TEXE FIBIA « « « v v v et et et et e 40
THMIE FIEIA: -« v v v e ettt e e e e e 40
THQGEr FIEIA « « -+« e v e e et et e e 41

GHAS OVEIVIBW « « « « « v« o e ettt et ettt e e et e e e e e 41
GO PANEI « v e v v v ettt e e e 41
B AV 11 F S 41
70 1] aTe EER 42
GO COIUMNS « « « o v v e et ettt et et e e e et e e e e e e e 42
AGHON COIUMN- « « « + v v et ettt e e et et e e e e e e e e e e e 42
ACHON COIUMN BIM « « « « « v ettt e ettt et e e et et e e e et 42
BOOIBAN COIUMM -+« « « « « v e ettt ettt e e e et et e e e e e e 42
(7] 18702 2 T 42
DAtE COIUMI « -+« v v e v et ettt e e ettt e e et e e e e 42
NUMDET COIUMIN <+« « « v ettt et et e e et e e e e e et e e e et e et e e e e 42
TEMPIALE COIUMN -+« « « + v et et e e ettt et et ettt 42
GO FOAIUIES - « « « « « « o v et et et et e e e e e et e e e e e e 42
GrOUPING FEALUIE « -+« =+« v e v e e ettt ettt e ettt et ettt ettt 43
GIrOUPING SUMMEY FEALUIE « -« « -+« « -+« vt ettt ettt ettt 43
ROW BOGY FEALUIE « -+« + + + v et ettt e et ettt et et 43
SUMMEATY FEATUIE « -+« + « « + e e et ettt et et ettt e e e 43
GO SEIBCHION « « « « v v o v ettt e et et e e e 43
Cell SEIECHON MOGEI: -« « « « « v v ettt e e e e e e e e e 43
CheCKDOX SEIECHON IMOGEI - « -« « v v vttt et e e e e e e e e e e e 44
ROW SEIECHON MOGEI - « -« « v e v et ettt e et e e e e e e ettt e 44
Drag DIOP PIUGIN: - « « « « + « v e et ettt ettt ettt 44
GO VIBW « « v e v v et ettt et e e e e e e 44

MENU COMPONENES OVEIVIBW - - - « « « « « + -+ e v ettt ettt ettt ettt 44
CRECK I« « + v v e v ettt et ettt e 44
(0710 TV 1= a1 T 44
DALE MIBIU -+« « + v e v et ettt e ettt e e e 44
MU ¢ ¢ ¢ esssssososssssssssssssssssasasassscsosasosononossssosososososssssssascccsscccssss 44
IIENU TEBIM « « « v e v v et et et e e e et et e e e e e e e 45
Te oL 1o A 45

Standard COMPONENTS OVEIVIEW: « - « « « « « « «««t ettt ettt ettt ettt 45
BT ON -+« v v v v e e et et et e e e e e e 45
Component .. 45
CYCIE BUTION -+« + + v e et ettt et ettt e 46
10 IR LT 46
PrOgress Bar « -+« e o vttt e 46

Table of Contents Page Il

oo 46
TOOIDAL =+« v v v e e e e e e e e e 46
BUEON GIIOUD: - -+« « « « « =« + e et e e ettt et ettt e ettt 46
=T 47
PAGING TOOIDAN -« « -+« c v e e et ettt ettt ettt 47
A0 « + + v v e e vt e 47
] (o= SR R 47
TEXE BN« « v v e ettt e e e e e e e e 48
TOOIDAL « « « « « v e e e ettt e e e e e 48

Tree COMPONENS OVEIVIBW « « - « « + « « + « «x ot ettt ettt ettt ettt ettt 48
THEE PANGI -+« « « v o v v v e et e e e e 48
VIBWS OVEIVIEW: « « « <« e e e e et e e e e e e e e e e e e e e e e e e 49
BOUNG LISt « « « « « = o v e e e et e e e e e e e e e e 49
WIBW: « + « v e e e e e e e e e 49
Chapter 4: Forms, Menus, and TreES - « - -+« v o v vttt 50
BUIIAING FOMMS -+« + « v e et et et et et et e e e et 50
BUIIING @ SIMPIE FOMM « « -+« « v oo ettt et 50
Changing the Width of FOrmM COMPONENLS - « « « -« « « « v e vt ie ettt 52
AAING @ PASSWOID fIEIT - -+« « e e ettt et 52
Adding a Group of Radio BULONS 0OF CRECKIDOXES « -+« « « <+« « v« v vt ettt e e 592
Arranging Fields in MUIPIE COIUMNS « - -+« « « -+« e v m ettt ettt 53
Aligning Fields HOMZONTAIY « -+« « « « «+ « v e ettt et ettt 54
POPUIAtING 8 COMIDOBOX « -+« « « « + «t et ettt et ettt 54
BUIIIING MIBINUS - -+« + + + + o e et e e et ettt ettt 55
Creating SUDIMENUS -« « « « « « « « «++ e vttt ettt ettt et et 56
POPUIBHING TFEES -+« « -+« + o+ e et ettt ettt ettt 57
Chapter 5: Component-Oriented DESIgN + e e e 58
AAING TOP-LEVEl COMPONENES -« « « -+« « « -+ e et ettt ettt 59
Promoting @ COMPONENT t0 @ CIASS « « « « « + + « « ++ v e e e ettt et ettt 59
Selecting @ LINKed INSEANCE’S CIASS: « -+« « -+« « « « v ettt ettt et ettt 62
Setting a Top-Level Component’s xtype/alias and Class Name -« - -« -« oo vveeeein 62
Reusing @ TOP-Level COMPONENT: - -« « « -+« «t ettt ettt ettt 63
Chapter o: Working With Data StOres - -« v vt e e e 65
USING Data StOres i DESIGNEN - « - « « « « « -« vttt et et et et ettt 65
CROOSING @ SEOME TYPE: « - -+« « -+« e e e et e et et ettt 65
CroSS-DOMAIN REGUESTS - - + + + « + + + + ++ + et ettt ettt ettt et 66
Specifying the Location of the SOUICE Data: - « « « -+« « «««« et v nee et ettt 66
MaPPING DALA FIBIAS -+« « -+« + v o e et ettt ettt e 67
LoAdING DAta iNtO @ SOTE « - -+« « -+« « vttt ettt ettt 68
BINding @ Store 10 @ Ul COMPONENT: - « « -+« + « -+« ettt ettt ettt 69
Data SLOrE EXAMPIES « « -+« + « + v o e e ettt ettt e 70
USING 8 JSOM SHOME « ¢+ ¢ o ¢ ot v e te ettt ittt ettt ettt ittt tttettttnensuasetasnsatuetasnsans 70
USING 8N AITAY SEOTE: « -+« -+t et ettt ettt ettt 71
USING @N XML SEOFE « -« « «+ v e e et ettt et ettt ettt 71

Table of Contents Page IV

Introduction

Sencha Ext Designer is a graphical user interface builder for Ext JS Web applications. The
easy-to-use drag-and-drop Designer environment enables fast prototyping of application in-
terface components, connecting interface components to data, and exporting well-formed,
object-oriented code for each component.

Programmers and non-programmers alike can use Designer to collaborate on an appli-
cation’s design, which helps get projects started faster and enables faster iteration. With
Designer, you can, for example:

» Quickly and easily build complex forms.
» Change component layouts and swap control types with the click of a button.
» Focus on writing implementation code, rather than boilerplate user interface (Ul) code.

Projects developed using the latest version, Designer 1.2, can output code using either Ext
JS version 3 or Ext JS version 4. This document covers projects that target Ext JS version 4.

“Using Sencha Ext Designer for Ext JS 4.x Projects” is organized into the following chap-
ters:

Chapter 1: Getting Started with Designer

A quick introduction to the basics of using Designer to build an interface, including an ex-
ample exercise in which you build an application Ul.

Chapter 2: Working With Layouts

How to set up and change basic container layouts you use to present content and data
within an application.

Chapter 3: Designer Component Overview

An introduction to all the standard Ext JS components that can be selected and configured
with Designer.

Chapter 4: Forms, Menus, and Trees

Using Designer to build common Ul elements with Ext JS components.

Introduction Page 5

Chapter 5: Component-Oriented Design

Advanced information about working with components in designer, including creating cus-
tom components and breaking an application into smaller parts that can be developed and
maintained separately.

Chapter 6: Working with Data Stores

Setting up client-side data stores and displaying their data in an application.

Introduction Page 6

Chapter 1: Getting Started with Designer

Designer can be used in conjunction with existing development environments and tools,
as it’s not a replacement for IDEs or text editors. The code generated by Designer can be
imported into an existing IDE, and the Ul implementation files can be edited outside of De-
signer with any commmon IDE or editor.

When using Designer, follow this basic workflow, iterating through the process as many
times as needed to create a satisfactory Ul:

» Lay out Ul components on the Designer canvas.

v

» Configure the components.

» Connect to data stores.

> Export the project code targeting Ext JS 4.x framework. Designer generates multiple .js files.
> Implement event handling and custom methods in the generated .js files.

v

v

v

Navigating Designer

Launching Designer automatically creates a new project and displays a screen that asks if
you want to open an existing project, or open a new project using either Ext JS 3.3.x or Ext
JS 4.0.x, as shown here:

Chapter 1: Getting Started with Designer Page 7

For the purposes of this guide, click Ext JS 4.0.x. Designer will open a blank canvas.

Here are the main elements of Designer:

Toolbox

Lists the components to build a Ul. These correspond to standard Ext JS classes. For more
information about each class, see the Ext JS 4.0 API Reference. You can drag and drop
components from the toolbox onto the canvas. The Toolbox title shows the version of Ext
JS targeted by the project.

Canvas

A design space for assembling your Ul. Add components, then resize and rearrange them
and edit component titles and labels. (For more information see “Laying Out Ul Components
with Designer” below.)

Components tab

Shows components added to the current project. From the Components tab, select, rear-
range, duplicate, transform, and delete components in the canvas.

Component Config Inspector
Use this to view and modify a selected component’s settings and work with Data Stores

Data Stores Inspector

Shows data sources added to a project. From here, you add new JSON, Array, XML, and
Direct data sources, add and remove a source’s data fields, and select, duplicate, or delete
existing sources. View and modify a selected data store settings in the Component Config
pane.

As you add components to the canvas, you can see them in a web browser by clicking the
Preview button below the canvas.

View the generated Javascript code by toggling between the Design and Code views. Save
the code to an external file by clicking the Export button. (Be sure to save your new project
before exporting it.)

Chapter 1: Getting Started with Designer Page 8

http://docs.sencha.com/ext-js/4-0/

Shortcuts

Designer provides a number of navigation and configuration shortcuts, as follows:
» Double-click components in the Component Toolbox to add them to the canvas.
» Tab between in-line editable fields on the canvas.

» Locate particular attributes in the Component Config inspector by typing their name in
the filter field.
» Set attribute values using Quickset: with the filter field in Component Config, type the

name of the attribute followed by a colon and the value you want to set. For example,
title: ‘Car Listings’. note: for strings you would wrap in single quotes.

Anatomy of a Ul created with Designer

Designer enables flexible assembly of web page elements, easy reuse of components, and
simplified maintenance of your Ul. When laying out Ul components with Designer, you drag
a container such as a Window or FormPanel onto the canvas and add components to the
container. By adding additional top-level containers to a project, you can lay out the different
parts of the Ul as separate entities. When you export your project, each top-level container
is represented by a class with the code for that class in its own separate file.

Laying Out Ul Components

Designer leverages the powerful layout capabilities of Ext JS to simplify the creation of com-
plex forms and make it easy to switch between alternate layout options.

Adding Components

To start assembling the application Ul, drag components from the Toolbox onto the canvas.
Designer ensures that components nest properly, and prevents the addition of incompat-
ible components to a container. For example, Window or Viewport components can’t be
dropped into a Container, and Designer will display an icon showing this can’t be done if
you try to do this.

The following steps show how to assemble an application Ul. (The examples are all drawn
from the Designer demo application, Car Listings. You can see a screen capture of the
building of the Car Listings Ul using Designer; see Additional Resources at the end of this
chapter.)

Drag a Panel container from the Toolbox onto the canvas. This is the top-level component
for the application. Now scroll further down the Toolbox to the Grid Panel item, and drag a
Grid Panel into the Panel container. The result will look like the following:

Chapter 1: Getting Started with Designer Page 9

This grid panel will later be used to display the available car listings and enable the user to
select a listing to view.

Scroll back up to the top of the Toolbox to Containers, and drag another Panel into the
Panel container. This panel will later be used to display the car details for the listing selected
in the Grid Panel. For now, you will see the following:

Positioning Components

The next step is to position the components just added to the application. By default,
components are laid out using relative positioning. The best way to control the position of
the elements on the canvas is to set the layout type of the containers and adjust the layout
attributes on the container and each child component.

Chapter 1: Getting Started with Designer Page 10

To start positioning the components in the example application, click the flyout config but-
ton on the top-level panel and set the layout to vbox. This will arrange the grid and sub-
panel vertically. From this menu, you can also set the alignment and auto-scroll attributes.

Next, set the alignment for the top-level panel to stretch, as shown below. This will cause
the sub-components to stretch to fill the available space.

Next, position the Grid Panel that’s part of the Panel container in the application. Select

the Grid Panel (currently labeled ‘My Grid’) and set the flex attribute to 1 in the Component
Config inspector, as shown here:

Tip: You can type the name or first few characters of an attribute in the text field at the top
of the Component Config inspector to quickly navigate to a particular attribute.

The Grid Panel inherits the flex attribute from Ext.layout.VBoxLayout because the layout of

Chapter 1: Getting Started with Designer Page 11

the Panel container is set to vbox. Setting the flex attribute of each of the components in
the container to 1 will cause the components to take up the same amount of vertical space
when the container is resized. (Similarly, if you wanted the sub-panel to take up two-thirds
of the vertical space, you could set the flex value of the panel to 2 and the flex of the grid to

1.)

You need to do the same thing to the sub-panel that’s been added to the top-level panel.
Do this by selecting the sub-panel (currently labeled ‘My Panel, at the bottom of the top-
level panel) and setting the flex attribute to 1.

Although its not recommended, you can choose the absolute layout option, where you drag
components on the canvas to reposition them. When working with Designer, however, it’s
preferable to rely on the Ext JS layout manager to control the positioning and sizing of the
components.

Layout Options

Setting the layout on a container controls how Ext JS lays out the components within that
container. Switch between layout options by clicking a container’s flyout config button and
selecting a different layout.

Ext JS provides the following basic container layouts. Some support specific, commonly-
used presentation models such as accordions and cards, while others provide more gen-
eral-purpose models that can be used for a variety of applications. They’re listed here; see
“Chapter 2: Working With Layouts in Designer” to learn how to select and configure layouts
and see examples of them.

» Auto » Column
» Absolute » Fit

» Accordion » Hbox
» Anchor » Table

» Border » Vbox

» Card

Configuring Components

Component attributes such as titles and labels can be edited directly in the Designer Can-
vas. Just double-click the text you want to modify and type. The Component Config inspec-
tor enables configuration of all possible attributes for the selected component. Whenever
you change the attribute from something other than the default value, Designer places an
‘X’ next to the attribute. This makes it easy to find edited attributes and revert to the default.

Chapter 1: Getting Started with Designer Page 12

For the example application, start by setting the title and column heading attributes. Dou-
ble-click the title of the top-level panel (‘My Panel’) and type car Listings. This does the
same as setting the title attribute in the Component Config inspector. You'll see the follow-

ing:

Next, double-click the text in the three column headings in the grid (‘Column’) one at a
time. Type over each column head Manufacturer, Model, and Price (from left to right) to
change their names.

The component attributes can all be set in the Component Config inspector in the lower
right corner of the Designer window. Try this for the rest of the component attributes in the
example application.

First, remove the title bars from the grid panel and sub-panel within the top-level panel.
Select each component and click the clear button (x) to the right of the title attribute in the
inspector. Now, the only title bar visible is the Car Listings title, as shown in the next image.

The component needs to have its own name in the code that will be generated for the
example Ul. To name the component in the code, select the top-level panel, which you just
renamed ‘Car Listings. Double-click the text next to the userClassName attribute in the
Component Config inspector (‘MyPanel’). Type over it CarMasterDetail.

To see the code for the project, click the Code button below the canvas. You can toggle
between the design and code views by clicking the Design and Code buttons.

Next, enable the frame attribute of the Car Listings panel. Instead of the plain 1px square
borders, this renders the panel with additional styling, including rounded corners. Do this by
scrolling further down the inspector and clicking the box next to the frame attribute. The box
should now have a check mark in it.

Now, configure ids for the components so they can be directly referenced in the code re-
gardless of how they are nested. First, select the Grid Panel and set the itemld for the panel
to ‘grid.” Then, select the sub-panel and set its itemld to ‘detail’.

Chapter 1: Getting Started with Designer Page 13

http://docs.sencha.com/ext-js/4-0/#/api/Ext.panel.Panel-cfg-frame

To add padding around the contents of the sub-panel, select the panel, type p to jump to
the padding attribute, and type 10 in the box next to the name of the attribute. This sets
padding to 10, the typical CSS padding attribute.

Using Templates

You can use templates to dynamically display information from a data store in a panel
component. A template is an HTML fragment that can contain variables that reference fields
in a data store. Templates also support auto-filling of arrays, conditional processing, math
functions, and custom functions.

Variables are enclosed in curly braces. For example, {manufacturer} references the data field
called manufacturer. You can also specify formatting functions to control how the data is
displayed. For example, {price:usMoney} uses the usMoney format to prepend a dollar sign
and format the number as dollars and cents. See Ext.Util.Format for the full range of avail-
able formatting functions.

The Car Listings example application uses a template to display the detail information for the
selected listing. The image and wiki URL are pulled in from data fields in the cars.json data
store. (See “Connecting to Data,” below, for information about how to attach a data store.)

To configure the template in the example Car Listings Ul, click the flyout config button (a
gear-shaped button in the blue tab just to the right of the component name) on the sub-
panel and then click Edit Template to add a template for the detail information. The body of
the component becomes an editable text area, as shown here.

Enter the HTML mark-up for the template into the text area, as follows:

Click Done Editing to save the HTML to the example application.

Chapter 1: Getting Started with Designer Page 14

http://docs.sencha.com/ext-js/4-0/#/api/Ext.XTemplate
http://docs.sencha.com/ext-js/4-0/#/api/Ext.util.Format

Connecting to Data

You can attach data stores and bind them to the components in your Ul from Designer.
The listing information displayed by the Car Listings application is read from a JSON data
store called cars.json. To connect the data store and pull in manufacturer, model, price,
wiki, and image data, start by adding a data store for the cars data.

Select the Data Stores tab, then select Json Store from the Data Stores toolbar, as shown
here:

Select the newly-created store in the Data Stores tab (‘CarStore’). Using the Component
Config inspector, set the userClassName attribute to ‘CarStore.” Set the storeld attribute to

the same name.
Right-click the data store and select Add Fields > 5 fields to add data fields to CarStore for
each field defined in cars.json.

Chapter 1: Getting Started with Designer Page 15

Continue to configure the new data store (‘CarStore’): Select the store Proxy node and then
set the url attribute to the relative path where the store will reside, that is cars/cars.json.
This path is relative to the URL prefix specified in the Project Settings.

Next, select the store Reader node and set the root attribute to data. Select CarStore
again, and enable the autolLoad attribute to configure CarStore to load automatically. (If you
don’t do this, you won’t see any data when viewing the application designer.html file.)

Now give each data field in CarStore a name. Select each of the five data fields one at a
time in the Data Stores tab, then set the name attribute of each field in the inspector. From
top to bottom, name them manufacturer, model, price, wiki, and img.

The next step is to bind the grid component to the store. Do this by clicking the flyout config
button on the grid component and selecting CarStore, as shown here:

Chapter 1: Getting Started with Designer Page 16

Finally, link the grid columns to the appropriate data fields by selecting a column in the
Components list and, in the inspector, setting the datalndex attribute to the name of the
data field, as shown just below. Data from the store is immediately displayed in the grid.
Had we not already titled our grid columns, right-clicking on the grid panel and selecting the
“Auto Columns” feature would populate the grid with one column for every data field in the
bound CarStore.

Exporting a Project
Exporting a project generates the Javacript files for your application. When exporting a proj-
ect, Designer creates the following for each top-level component:

The folder app/view/ui contains a .js base class that defines all the top level components.

The file app/view/CarMasterDetall.js is generated (if it does not exist already). Use this class
to implement your event handler code and custom methods.

The folder app/store contains a .js class for all stores. CarStore.js will be generated here.

Designer overwrites files in the app/view/ui/ and app/store folders each time it exports a
project. Do not modify these files directly.

Along with the Javascript files mentioned above, Designer generates several other files at
the root project folder level. All these file names begin with ‘designer’. The designer.html file
loads the Javascript and displays your app. Do not modify these files as they are regener-
ated each time a project is exported.

To export a project:
Save the project. (A project must be saved before Designer can export it.)
Click the Export button below the canvas.

The project will be saved to the Export Path specified in the Project Settings. (To change the
location, select Project Settings... from the Edit menu.)

Chapter 1: Getting Started with Designer Page 17

Attaching Event Handlers to Ul Components

The files Designer generates can be imported to an external IDE or editor for customiza-
tion or adding event handlers. You add event handlers by editing the .js files exported by
Designer. Here’s how to add an event handler to the Car Listings example application that
displays the appropriate image and wiki information when a user selects a row in the grid.

In the file CarMasterDetail.js Designer created when it exported the Car Listings example
application, retrieve the selection model reference for the grid:

var sm = me.down(‘#grid’).getSelectionModel();

The default selection model for a grid is a RowModel. Whenever a row in the grid is select-
ed, a select event is fired. This event includes the SelectionModel, the record that provides
the data for the row, and the rowIndex.

Next, add an event handler to call a custom onGridRowSelect function when a row in the
grid is selected:

sm.on(‘select’, me.onGridRowSelect, me);

Finally, implement onGridRowSelect to update the detail panel with the data from the data
store:

onGridRowSelect: function(grid, record) {

this.down(‘#detail’) .update(record.data);

}

Test the final application by launching it in the browser, pointing to the URL specified in the
Project Settings dialog.

For more information about working with Ext JS grids, see the APl Documentation.

Additional Information
For more information about Designer and Ext JS:

» Watch the Designer Demo, which shows how to build the Car Listings example ap-
plication described here.

» View the Designer webcast, which introduces Designer 1.2

» For information about release and updates, see the Designer Changelog.

» |f you're new to Ext JS, see the Learn Ext JS section of the Learning Center.

» For the details about any Ext JS class or method, see the Ext JS API Reference.

Chapter 1: Getting Started with Designer Page 18

http://docs.sencha.com/ext-js/4-0/#/api/Ext.selection.RowModel
http://docs.sencha.com/ext-js/4-0/#/api/Ext.selection.RowModel-event-select
http://docs.sencha.com/ext-js/4-0/#/api/Ext.grid.Panel
http://www.sencha.com/assets/video/ext-designer-screencast.mov
http://www.sencha.com/learn/ext-designer-1-2-beta-overview/
http://www.sencha.com/products/designer/changelog/
http://www.sencha.com/learn/extjs/?4x
http://docs.sencha.com/ext-js/4-0/

Chapter 2: Working with Layouts

In Ext JS, layouts control the size and position of the components within an application.
With Designer, configuring a layout on each container lets you manage how that container’s
children are rendered. The container layout determines what size and position configuration
options can be set on its child components.

Basic Container Layouts

Ext JS provides a number of basic container layouts, which you can select and configure
using Designer. Some support specific, commonly used presentation models such as ac-
cordions and cards, while others provide more general-purpose models that can be used
for a variety of applications.

Auto

The default layout. For general-purpose containers such as a Panel, using the auto layout
means child components are rendered sequentially. Note that some containers are auto-
matically configured to use a layout other than the default auto. For example, TabPanel
defaults to the card layout and Toolbar defaults to the hbox layout.

Absolute

Arranges components using explicit x/y positions relative to the container. This enables
explicit repositioning and resizing of components within the container, providing precise
control. Keep in mind that absolute-positioned components remain fixed even if their parent
container is resized.

Designer displays a grid within a container that uses absolute layout. By default, compo-
nents snap to the grid as they are repositioned. Clicking the container’s flyout config but-
ton enables resizing or disabling the grid. The grid is only displayed as a layout guide in the
Design view; it is not visible when the component is rendered.

Chapter 2: Working with Layouts Page 19

Accordion

Arranges panel components in a vertical stack where only one panel is expanded at a time.
Only panels (including sub-classes thereof, e.g. TabPanel) can be added to a container that
uses the accordion layout.

Anchor

Arranges components relative to the sides of the container. Specify the width and height of
child components as a percentage of the container or specify offsets from the right and bot-
tom edges of the container. If the container is resized, the relative percentages or offsets are
maintained.

Border

Arranges panel components in a multi-pane layout according to one of five regions: North,
South, East, West, or Center. A container that uses the border layout has to have a child
assigned to the Center region. The center panel is automatically sized to fit the available
space. Resize the North, South, East, and West panes on the canvas by clicking and
dragging the right or bottom edge of the panel.

Make any of the panels in a border layout collapsible by enabling the collapsible attribute.
When rendered, the child panels automatically resize when the container is resized.

Card

Used to let the user step through a series of components one at a time by arranging child
components so that only one can be visible at a time, filing the entire area of the container.
Specify the component you want to make visible by invoking the setActiveltem method.
This behavior is typically attached to a Ul navigation element, such as Previous and Next
buttons in the footer of the container. It's commonly used to create wizards.

Column

Arranges components in a multicolumn layout. The width of each column can be specified
either as a percentage (column width) or an absolute pixel width (width). The column height
varies based on the contents. Enable autoScroll if the application data requires viewing
column contents that exceed the container height.

Chapter 2: Working with Layouts Page 20

Fit

Expands a single child component to fill the available space. For example, use this to create
a dialog box that contains a single TabPanel. If the container is a type of panel component,

you can also add and dock additional child components, such as a Toolbar, to the top, left,

right, or bottom of the panel.

Table

Arranges components in an HTML table. You need to specify the number of columns in the
table. Designer enables creation of complex layouts by specifying the rowspan and colspan
attributes on the child components.

Hbox

Arranges the child components horizontally. Setting the alignment of the container to stretch
causes the child components to fill the available vertical space. Setting the flex attribute of
the child components controls the proportion of the horizontal space each component fills.

Vbox

Arranges the child components vertically. Setting the alignment of the container to stretch
causes the child components to fill the available horizontal space. Setting the flex attribute
of the child components controls the proportion of the vertical space each component fills.

Nested Layouts

When you nest containers, the layout configuration for the parent container manages the
layout of whatever child components (including other containers) it contains. The layout
doesn’t affect the contents of any child containers, only the containers themselves. This al-
lows for nested, complex layouts to be created.

Flexible Box Layouts

The hbox and vbox layouts enable child components to be resized to fit the available space
in a container using the flex attribute. The flex attribute is a numerical value that represents
the proportion of the available space that will be allotted to a component. You can set the
flex attribute to any floating point value, including whole numbers and fractions.

Chapter 2: Working with Layouts Page 21

For example, consider a component with three sub-panels in which flex is set to ‘1’ for
Panel 1 and Panel 3, and flex is set to ‘2’ for Panel 2. The available space is divided into
four equal portions (the sum of the flex values), and Panel 1 and Panel 3 each get one por-
tion while Panel 2 gets two, as shown here.

If you set an absolute width or height for some components and a flex value for others, the
absolute sizes are subtracted from the total available space and the remaining space is
allotted to the flexed components. For example, if the container is 400 pixels wide and the
width of Panel 1 is set to 200 pixels, the panels with flex attributes set share the remaining
200 pixels. If Panel 2 has a flex of 2 and Panel 3 has a flex of 1, Panel 2 will get two-thirds
of the space and Panel 3 will get one-third of the space. See below.

Chapter 2: Working with Layouts Page 22

If neither an absolute size nor a flex value are specified for a component, the framework
checks to see if the size is defined in the application’s CSS. If no size is specified in the
CSS, the framework assigns the minimum necessary space to the item.

Stretching Components to Fit

If ‘stretch’ is specified as the alignment option for a container that uses the hbox or vibox
layout, its sub-components are automatically stretched to horizontally or vertically fit the
size of the container. When hbox is used, the sub-components are stretched vertically. With
vbox, the sub-components are stretched horizontally. For example, when ‘stretch’ is set on
a panel that uses hbox, each of the sub-panels is automatically stretched to fill the available
vertical space.

The stretchmax option works just like stretch, except it stretches sub-components to the
size of the tallest or widest component, rather than the size of the container.

Configuring the Layout for a Container

The Designer Ul provides two ways to set the layout for a container, both of which are intro-
duced in Chapter 1 of this guide. They are the following:

» The container’s flyout config button
» The Designer Component Config inspector

You can use either; whichever is more convenient.

Chapter 2: Working with Layouts Page 23

Using CardLayout to Create a Wizard

If a component uses the card layout, its children are visible one at a time, making it an ideal
option for creating a wizard. The following provides a detailed example of working with
layouts in Designer, showing how to create a three-step registration wizard using the card
layout.

The basic approach is to add sub-panels to a Window that uses the card layout and con-
figure a navigation toolbar to step through the panels. Window components are specialized
types of panels that can float, be resized, and be dragged. Then, you implement a handler
that calls the setActiveltem function to display the appropriate panel when the user clicks a
navigation button within the Window.

Start by dragging a Window from the Toolbox onto the Designer canvas. A Window can
only be added as a top-level component; it cannot be added as a child of an existing
component. Click the Window'’s flyout config button and select card from the layout menu
to apply the card layout to the Window, as shown below. Also, name the wizard by double-
clicking the Window title on the canvas to edit it. (Another way to edit the Window title is to
set the title attribute in the Component Config inspector.)

Next, drag a Panel component onto the Window; this sub-panel will be used to create the
first step in the wizard. Panels in a CardlLayout are numbered in the order they are added to
the container, starting with item O. By default, item O is set as the active item. To change the
active item within Designer, select the Window and set the activeltem attribute to the panel
you want to make active.

Add two more panels to the Window for the second and third steps of the Wizard, as
shown just below. Either drag them onto the title bar of the Window on the canvas or onto
the Window in the Components tab.

Chapter 2: Working with Layouts Page 24

As sub-panels are added, hide their title bars by selecting each sub-panel in the Compo-
nents tab, scrolling down the Component Config inspector to the title attribute under ‘Ext.

panel.Panel, clicking the text in the field (‘My Panel’) next to the title attribute, and erasing
the text, like this:

Chapter 2: Working with Layouts Page 25

The wizard needs navigation buttons to move from one step to the next. Do this by drag-
ging a Toolbar from the Toolbox to the top-level Window and dock it at the bottom of the
Window (choose bottom), as shown here:

Then, add four buttons to the Toolbar and name the buttons Cancel, Previous, Next, and
Submit. Double-click the first button label on the canvas and type over to name them, and
use tab to move to the next button in the Toolbar until you’ve named each button.

The buttons need a little more work to make them more usable by both the user and the
developer. First, align the buttons by adding a Fill between the Cancel and Previous button
and a Spacer of width 20 between the Next and Submit buttons.

Then, using the Component Config inspector, scroll down to the itemid attributes (under
Ext.AbstractComponent) for each button and set them to a name that can be easily refer-
enced in the navigation handler. For example, set the itemid attributes to cancelBtn, pre-
vBtn, nextBtn, and submitBtn respectively.

Now we're ready to add the content to each card that will be used in the wizard. However,
since the wizard needs to gather user input, each card should be a FormPanel rather than
a Panel. Fortunately, in Designer it’s easy to change one type of component into another. To
change the Panels into FormPanels, right-click each one and choose Transform > Ext.form.
Panel.

Chapter 2: Working with Layouts Page 26

For this example, we built a registration wizard for a series of horsemanship clinics with
three cards, shown below. By default, card 0 is the active card. To add form fields to card 1
and card 2, select the Window and set its activeltem attribute to the panel you want to work
on.

For more information about creating forms in Designer, see ‘Building Forms’ in Chapter 3:
Working with Components in Designer.

Using Border Layout for a Viewport

Use the Viewport container for applications that need the entire content area in a browser
window (that is, the entire browser viewport). Viewport usually uses the border layout to ar-
range a collection of sub-panels according to the regions North, South, East, West, or Cen-
ter, as shown below. With the border layout, there must be a panel assigned to the Center
region, which is automatically sized to fit the available space.

Let’s step through creating another example Ul that uses a Viewport with the border layout,

Chapter 2: Working with Layouts Page 27

in this case a viewer students would use to register for classes.

Start building the viewer by dragging a Viewport from the Toolbar onto the Designer canvas.
A Viewport can only be added as a top-level component; it cannot be added as a child of
an existing component. Select the border layout by clicking the Viewport flyout config but-
ton and selecting border from the layout menu, like this:

Next, drag a Panel into the Viewport. Because this is the only component currently in the
layout, it is automatically assigned to the Center region. This Panel will display information
about people who have signed up for one of our classes, so name the Panel Student Infor-
mation.

Add a TreePanel to the Viewport by selecting the Viewport and double-clicking TreePanel

in the Toolbox to add it as a child of the Viewport. Alternately, you can drag the TreePanel
onto the Viewport in the Components tab. The TreePanel will automatically be assigned to
the West region. Students will use the tree to navigate through the classes they can take, so
name it Class List.

Note that it is possible to change the region that a sub-component is assigned to. To do so,
set its region attribute in the Component Config inspector.

The next step would be to configure the Class List tree and the Student Information Panel
to display content about classes. A template could be used to display data for individual
students in the Student Information Panel.

Using hbox Layout to Create Multiple Columns

The hbox layout enables horizontal arrangement of sub-components, while vibox lays out
sub-components vertically. These general-purpose layouts provide a lot of control over how
components are positioned without having to resort to using absolute positioning.

Chapter 2: Working with Layouts Page 28

Take as an example, arranging several related checkboxes in multiple columns to conserve
space. To do this, start by adding a FieldSet container to your FormPanel parent for the
checkboxes and setting the layout of the FieldSet to hbox, like this:

Next, add a Container component to the FieldSet for each column. For each Container,
set flex to 1 and set the height to accommodate all the checkboxes that will be added. For
example, 60 pixels will accommodate three rows of checkboxes.

It's easiest to select the column containers from the Component Tree tab rather than from
the canvas. (When they are first added to the FieldSet, they are only 2 pixels tall.)

Finally, add checkboxes to each column container and set their boxLabel attributes. To
specify margins around the checkboxes as shown just below, change the layout of the
column containers from auto to vbox, and then set the margin attribute for each individual
checkbox.

Chapter 2: Working with Layouts Page 29

Chapter 3: Component Overview

Designer supports all of the standard Ext JS Ul components. This chapter provides an over-
view of the standard components available through the Designer Toolbox and how to work
with them, including the following types of components:

» Containers » Standard
» Charts » Toolbar
» Form Fields » Tree

» Grid » Views

» Menu

For additional information about individual components, see the Ext JS APl Documentation.
Also, keep in mind that custom components created in Ext JS can be saved and accessed
through the Toolbox, as well as exported from Designer and saved to your development
system for later importing back into other Designer projects.

Adding Components to a Ul

Building an application Ul starts with dragging a container to the Designer canvas, selecting
from a variety of common Ul containers provided by Ext JS, including the most basic con-
tainer, called simply a Container, as well Window, Panel, and Viewport; see the next section
for an overview of all of them.

The next steps are to add display and control components to the container as well as ar-
ranging the components with the container’s layout options. For more about layouts, see
Chapter 2 in this guide and check out the Ext JS Layout Browser. Dragging additional con-
tainers within the first container adds them as children; dragging them to an empty portion
of the canvas adds them as new top-level containers.

When nesting containers, make sure not to add redundant containers to the hierarchy.
For example, if you want to display a Tree Panel and a Grid Panel in a Viewport that uses
BorderLayout, you can add them directly to the Viewport and set their region attributes to
control their positions. There’s no need to add left and center Panel components to the
Viewport first, and then add the Tree Panel and Grid Panel to those Panels.

Chapter 3: Component Overview Page 30

http://docs.sencha.com/ext-js/4-0/
http://docs.sencha.com/ext-js/4-0/
http://docs.sencha.com/ext-js/4-0/
http://docs.sencha.com/ext-js/4-0/
http://docs.sencha.com/ext-js/4-0/
http://docs.sencha.com/ext-js/4-0/
http://docs.sencha.com/ext-js/4-0/
http://docs.sencha.com/ext-js/4-0/
http://www.sencha.com/deploy/dev/examples/layout-browser/layout-browser.html
http://www.sencha.com/deploy/dev/examples/layout-browser/layout-browser.html
http://www.sencha.com/deploy/dev/examples/layout-browser/layout-browser.html
http://www.sencha.com/deploy/dev/examples/layout-browser/layout-browser.html
http://www.sencha.com/deploy/dev/examples/layout-browser/layout-browser.html
http://www.sencha.com/deploy/dev/examples/layout-browser/layout-browser.html
http://www.sencha.com/deploy/dev/examples/layout-browser/layout-browser.html
http://www.sencha.com/deploy/dev/examples/layout-browser/layout-browser.html

Designer prevents the addition of invalid components to a parent container. For example,
Viewports and Windows can only be used as top-level components and cannot be nested
within other containers.

When Designer exports a project, it automatically generates a separate class file for each
top-level component. Nested components can be exported as separate classes by using
the Promote to Class option. This enables Designer to generate several smaller, easier to
maintain implementation files for a complex interface rather than a single, large, monoalithic
code file. It also makes it easier to reuse custom components.

Containers Overview
Ext JS provides a variety of standard container types that can be added to a Ul and config-
ured using Designer to meet most development needs. Let’s take a look at all of them.

Container

Container is the simplest component that can contain other components. All other container
types are extensions of the Container class.

A Container is simply a logical container. Unlike a Panel or Window, it doesn’t have any
default visual characteristics.

Although typically used less than more specialized containers, Container provides a light-
weight option for cases in which you don’t need (or want) the added functionality. For
example, using Container is the preferred way to create a multicolumn layout within a form.

The default layout for Container is “auto”, which renders nested components as-is. With
the default layout for Container, nested components will not be resized when Container is
resized.

FieldContainer

FieldContainer enables a Ul to easily display multiple fields on the same row of a form, along
with a label and optional validation messages that match the display of other form fields.

Chapter 3: Component Overview Page 31

http://www.sencha.com/deploy/dev/docs/?class=Ext.layout.ContainerLayout

A common use of FieldContainer is for multipart name fields. However, a FieldContainer
can contain any type of Form Field, not just Text fields. Add fields by dragging them into the
FieldContainer or duplicating existing fields.

A FieldContainer can be given a fieldLabel of its own, or you can enable the combinelLa-
bels config option to automatically generate a label by combining the fieldLabels of its child
fields.

FieldSet

FieldSet is used to group related fields within a Form Panel. Specifying its title attribute dis-
plays the text for the title as a header within the FieldSet’s frame.

Typically, FieldSet contains form fields, but a FieldSet can also contain nested containers.
For example, nested container components can be used within a FieldSet to create a multi-
column layout.

Form Panel

Form Panel is a specialized Panel that groups a collection of form fields and labels and adds
capabilities for validating and submitting forms. In addition to the various Form Fields, con-

Chapter 3: Component Overview Page 32

tainers such as Container and FieldSet can be added to a Form Panel. For example, nested
Containers might be used to build a multicolumn form.

Internally, a Form Panel uses a_Basic Form to handle file uploads, data validation, and sub-
mission.

Panel

Panel is the basic building block for user interfaces providing robust application functionality.
A Panel can be added to any type of container and can have sub-components added to its
body area or docked to any of its four edges.

In addition to the generic Panel container, Ext JS provides a number of specialized types of
panels, including Form Panel, Tab Panel, Grid Panel, and Tree Panel. The Window container
is also an extension of Panel.

By default, a Panel uses “auto” layout, which simply renders nested components in the
order they are specified in the Panel class. Choose an appropriate layout to control the po-
sition and sizing of the nested components.

Tab Panel

Tab Panel is a specialized type of Panel that uses “card” layout to display a collection of

Chapter 3: Component Overview Page 33

http://www.sencha.com/deploy/dev/docs/?class=Ext.layout.ContainerLayout

nested components as separate tabs.

A Tab Panel’s title attribute is not displayed

Tab Panel uses the header and footer space for the tab selector buttons. If an application
needs to display a header, wrap the Tab Panel in a Panel container that uses FitLayout.

Designer adds a Tab Panel with three tabb components to the canvas by default. Additional
subcomponents can be added to each tab, and tabs can be added by dragging compo-
nents onto the Tab Panel.

Viewport

Viewport is used to represent the entire viewable application area in a browser window. A
Viewport automatically sizes itself to the size of the browser viewport.

Each page can have only one Viewport, but it can contain nested panels that each have
their own layouts and nested components. A Viewport is not scrollable —if scrolling is re-
quired, use scrollable child components within the Viewport.

Typically, ViewPort uses the “border layout with panels positioned within the Viewport by
setting their region attributes to “north, ‘south”, “east”, “west”, or “center”. If no region is
specified for a component, it defaults to the center region.

Window

Window is a specialized type of Panel that is resizable and draggable. Windows can also
be maximized to fill the viewport, minimized, and restored to their previous size. Unlike an
ordinary Panel, Windows float and can be closed.

Chapter 3: Component Overview Page 34

Windows are commonly used to present dialogs and errors.

Charts

The charting package, introduced in Ext JS 4, allows visualization of complex data stores
with a number of different chart types: Bar, Column, Gauge, Line, Pie, and Radar charts are
all supported.

Because manually adding and configuring the above axis and series items is a complex
process, the Charts toolbox section provides a set of pre-defined chart types, with common
axis and series configurations already in place and a temporary data store with dummy data
attached.

Once you add one of these chart types to your project, you will want to change its data
store from the dummy data to an actual data store you have defined. Other than that, you
are free to change, add, and remove its child axis and series items as you wish.

The Designer toolbox breaks down chart components into three sections: Chart Axis, Chart
Series, and Charts.

Chart Axis Overview

The Chart Axis toolbox section contains the supported axis types. An axis is essentially a
scale with tick marks and value labels for one or more dimensions of the chart data.

Category Axis
The Category Axis is for arranging data points by a non-numeric field, for instance months
of the year or people’s names. It can be positioned on any of the chart’s four edges by set-

ting the “position” config to “left”, “right”, ‘top”, or “bottom”. Its “fields” config property must
be set to the name(s) of the data store model fields it will encompass.

Gauge Axis

The Gauge Axis is for use with the Gauge Series, and displays tick marks along an arc. You
must set its “minimum” and “maximum” config values to the minimum and maximum values
you want the axis to display.

Numeric Axis

The Numeric Axis is for arranging data points by a numeric field, for instance a number of
visitors or a stock price. It can be positioned on any of the chart’s four edges by setting the

“position” config to “left”, “right”, ‘top”, or “bottom”. Its “fields” config property must be set
to the name(s) of the data store model fields it will encompass.

Radial Axis

The Radial Axis is for use with the Radar Series, and displays scale lines for two data
dimensions: one dimension in angles around the center, and one dimension in concentric
circles outward from the center.

Chart Series Overview
The Chart Series toolbox section contains the supported series types. A series is the actual

Chapter 3: Component Overview Page 35

representation of the records in the data store.

Area Series

Area Series is similar to a Line Series, but allows different data points to be stacked on top
of each other, each one’s value being represented by the area below it. Its “xField” and
“yField config properties must be set to the names of the data model fields for its x and y
dimensions, and its “axis” config property must be set to the edge of the axis corresponding
to its yField.

Bar Series

Bar Series displays each data record as a horizontal bar. For vertical bars, use Column Se-
ries. Its “xField” and “yField” config properties must be set to the names of the data model
fields for its x and y dimensions, and its “axis” config property must be set to the edge of
the axis corresponding to its yField.

Column Series

Column Series is identical to Bar Series, but displays the bars vertically instead of horizon-
tally.

Gauge Series

Gauge Series displays a single data point as a gauge along an arc. Its “angleField” config
property must be set to the name of the data model field holding its value.

Line Series

Line Series displays each data record as a vertex on a horizontal line. The lines between
points can be straight, or smoothed via the ‘smooth” config. Its “xField” and “yField” config
properties must be set to the names of the data model fields for its x and y dimensions, and
its “axis” config property must be set to the edge of the axis corresponding to its yField.

Pie Series

Pie Series displays data points as relatively-sized angle slices in a circle. Its “angleField”
config property must be set to the name of the data model field holding the value for each
slice.

Radar Series

Radar Series displays data points as vertices of a line of varying distance from the center
of a circle. It is most useful in conjunction with a Radial Axis. Its “xField” and “yField” con-
fig properties must be set to the names of the data model fields for its angular and radius
dimensions, respectively.

Scatter Series

Scatter Series is similar to Line Series but displays individual markers at each data point and
does not connect them with a line. Its “xField” and “yField” config properties must be set to
the names of the data model fields for its x and y dimensions, and its “axis” config property
must be set to the edge of the axis corresponding to its yField.

Chapter 3: Component Overview Page 36

Chart Legend

The Legend item in the Charts toolbox section can be added to any chart, to display a leg-
end for its various data items.

Form Fields Overview

Next, let’s look at Form Field options within Ext JS that can be added to an application and
configured with Designer. To build a form, add Form Field components to a Form Panel.
Use FieldSet to group related fields with a FieldSet. To create multicolumn forms, add
nested Containers for the columns. For more information about designing forms, see Build-
ing Forms, below.

Checkbox

Checkbox represents a single checkbox field. Specify the label for a Checkbox by setting
the fieldLabel or boxLabel attributes.

See Adding a Group of Radio Buttons or Checkboxes for more information about how to
use containers to build radio and checkbox groups with Designer.

Checkbox Group

Checkbox Group is a specialized FieldContainer for displaying a group of related check-
boxes.

ComboBox

ComboBox enables users to select from a list of items.

To configure the items for a ComboBox, connect it to a data store. For more information,
see Populating a ComboBox.

The height of a ComboBox is always set automatically, and its width can only be changed if
it is:

» Not used in an anchor, form, or fit layout

» Not within an EditorGrid Column

Chapter 3: Component Overview Page 37

http://www.sencha.com/deploy/dev/docs/?class=Ext.Viewport?class=Ext.form.Checkbox
http://www.sencha.com/deploy/dev/docs/?class=Ext.Viewport?class=Ext.form.ComboBox

Date Field

Date Field provides a date-picker for Ext JS applications. It also provides automatic data
validation for dates that the user enters manually.

Display Field
Display Field renders view-only text that is not validated or submitted with a form. In appli-
cation code, call setValue on the Display Field to set the display text.

File Upload

The File Upload field allows users to select a file from their local computer and have it up-
loaded when the form is submitted.

Hidden Field

Hidden Field is a field that is not displayed within a form, but can be used to pass data
when the form is submitted. In Designer, dragging a Hidden Field onto the canvas does not
result in any visual representation of the field, but it is listed on the Components tab.

HTML Editor

HTML Editor is a lightweight WYSIWYG HTML editor used within forms to enable users to
submit styled text. Tooltips are defined for the editor toolbar; to enable them, initialize the_
QuickTipManager.

Label

A_Label contains text that identifies a field in a form. Typically Label is not used directly.
Labels are automatically created for field components and can be set through the fieldLa-
bel attribute. (For Checkbox and Radio fields, set boxLabel to specify the label text that is

Chapter 3: Component Overview Page 38

displayed beside the field.)

Multi Slider

A Multi Slider is a slider field that supports multiple thumbs. A Multi Slider can be added

to any Container and placed either horizontally or vertically. To create a slider with multiple
thumbs, specify an array for the values attribute rather than specifying a single value. To cre-
ate a slider with only a single thumb, use a Slider.

Number Field

Number Field is a specialized text field that automatically performs numeric data validation
and only allows the user to enter numeric values.

Designer lets you set a maximum value for the field as well as other attributes on the field to
control whether or not it will accept decimal or negative values. If decimal values are permit-
ted, the precision and separator character can also be set.

By default the Number Field provides a set of buttons for incrementing/decrementing the
field’s numeric value. To hide these buttons, enable the “hideTrigger” config option.

Radio

Radio represents a single radio button. Set the boxLabel or fieldLabel attributes to specify
the button label, and add multiple Radio components to a RadioGroup to create a radio
button group.

To restrict the user to selecting a single radio button within a group, set the same name at-
tribute for each button.

Radio Group
Radio Group is a specialized FieldContainer for displaying a group of related radio buttons.

Slider

Slider enables a form field to use a slider control, providing an alternative to using Number
Field for entry of numeric data.

In Designer, by default useTips is enabled with a Slider to show the selected value, that the
minValue is O and maxValue is 100, and the increment is 1.

Chapter 3: Component Overview Page 39

http://www.sencha.com/deploy/dev/docs/?class=Ext.form.NumberField?class=Ext.slider.SingleSlider

Text Area

Text Area is a specialized Text Field that supports multiline text entry for gathering larger
amounts of user input.

To let users enter styled text, use the HTML Editor component instead.

Text Field

Text Field is a basic text entry field.

In addition to providing a commonly-used form element itself, Text Field is used as a build-
ing block for a number of specialized field types, including Number Field, Text Area, Trigger
Field, and ComboBox. Text Field provides built-in support for data validation. For informa-
tion about customizing validation behavior, see the Ext JS API Documentation.

Time Field

Time Field is a specialized ComboBox for selecting a time. Configure the time range by
setting the minValue and maxValue. By default, the list displays times in 15 minute intervals.
Configure the interval by setting the increment attribute.

Time Field supports time and date formats specified in the parsing and formatting syntax
defined in Ext.Date. If the input doesn’t match the expected format, Time Field automatically
tries to parse it using alternate formats.

By default, the format is set to g:i A, which displays times using a 12-hour clock, for ex-
ample, 3:15 PM. To use a 24-hour clock (where 3:15 PM becomes 15:15), set the format
attribute to H:i

Chapter 3: Component Overview Page 40

http://docs.sencha.com/ext-js/4-0/
http://docs.sencha.com/ext-js/4-0/
http://docs.sencha.com/ext-js/4-0/
http://docs.sencha.com/ext-js/4-0/
http://docs.sencha.com/ext-js/4-0/
http://docs.sencha.com/ext-js/4-0/
http://docs.sencha.com/ext-js/4-0/
http://docs.sencha.com/ext-js/4-0/
http://www.sencha.com/deploy/dev/docs/?class=Date

Trigger Field

Trigger Field wraps a Text Field to add a clickable trigger button, like that used for a Combo-
Box.

By default a Trigger Field looks like a ComboBox, but the trigger does not have a default
action.

Provide a custom action to Trigger Field by overriding onTriggerclick, or extend Trigger Field
to implement a custom reusable component. ComboBox extends Trigger Field to provide
standard combo box behavior. Time Field is also a specialized Trigger Field.

Grids Overview

To display data from a Store in an interactive table, use a Grid Panel component. Grid Panel
has built-in support for resizing and sorting columns, as well as dragging and dropping
columns. It also supports horizontal scrolling and single and multiple selections. The Cell
Editing and Row Editing plugins add support for inline editing.

Here is an overview of the Ext JS components used to build grids and how to work with
them from Designer.

Grid Panel

A_Grid Panel displays tabular data in rows and columns. The data displayed by a Grid Panel
is read from a Store. A Grid Panel’s child Column components encapsulate the configura-
tion information needed to render data into the individual columns.

Property Grid
A Property Grid is a specialized Grid Panel that displays only two columns. This is useful for
displaying and editing simple properties as name-value pairs.

Chapter 3: Component Overview Page 41

Editing
The Cell Editing Plugin and Row Editing Plugin can be added to a Grid Panel to allow inline
editing of the grid’s values one cell at a time or an entire row at a time.

Grid Columns

The types of columns appearing in your Grid Panel can be customized by adding/removing
items from the Grid Columns toolbox section as children of the Grid Panel. The supported
column types are:

Action Column

An Action Column is a specialized Column that contains icon buttons for performing certain
actions on each row.

Action Column Item

Drag an Action Column Item onto an Action Column to add an action icon button to that
column. Multiple Action Column ltems can be added to a single Action Column.

Boolean Column
A Boolean Column is a specialized Column for displaying Boolean data in a Grid.

Column

A_Column controls how the data in a Grid Panel column will be rendered. Column can be
used directly to display textual data, and Ext JS provides specialized Column types for dis-
playing boolean data, numeric data, dates, and templated data.

Date Column

A Date Column is a specialized Column for displaying dates in a Grid. Specify the Format
attribute to control how the date is formatted. Date Column supports the date formats
specified in the parsing and formatting syntax defined in Ext.Date.

Number Column

A Number Column is a specialized Column for displaying numeric values in a Grid. Specify
the Format attribute to control how the number is formatted. The formatting string is defined
according to_Ext.util.Format.number.

Template Column

A Template Column is a specialized Column that processes a record’s data using the
specified_template to generate the value to display in the Grid. The template is set in the tpl
attribute.

Grid Features
Grids support several pluggable “features” which modify how the grid data is presented:

Chapter 3: Component Overview Page 42

Grouping Feature

The Grouping Feature arranges data rows into groups by a common data field, and allows
each group to be collapsed. For example, for a grid that displays customer names and ad-
dresses, group them by city or state. To specify how items are grouped, set the “groupers”
config on the grid’s data Store.

Grouping Summary Feature

Like the Grouping Feature, the Grouping Summary Feature allows grouping of data items,
but also displays a summary at the bottom of each group. The method for calculating the
summary is specified by the ‘summaryType” config option for each grid Column.

Row Body Feature

The Row Body Feature enhances the grid’s markup to have an additional tr -> td -> div
which spans the entire width of the original row. This is useful to to associate additional
information with a particular record in a grid.

Summary Feature

The Summary Feature displays a summary of each column’s data at the bottom of the grid.
The method for calculating the summary is specified by the ‘summaryType” config option
for each grid Column.

Grid Selection

Grids support three methods for selecting data elements in grids. To enable one of these
selection methods, drag one of the Selection Models onto the grid. The supported selection
models are:

Cell Selection Model

The Cell Selection Model allows the user to select individual cells within a Grid Panel.

Chapter 3: Component Overview Page 43

Checkbox Selection Model

The Checkbox Selection Model is a specialized RowSelectionModel that adds a column of
checkboxes to a Grid Panel that can be used to select or deselect rows. This is commonly
used to enable actions such as move or delete on a selected group of items.

Row Selection Model

The Row Selection Model allows the user to select entire rows of the grid at once. It sup-
ports multiple selections and keyboard selection and navigation. Disable multiple selections
by enabling the singleSelect attribute. Disable the moveEditorOnEnter attribute to prevent
Enter and Shift+Enter from moving the Editor between rows.

Drag Drop Plugin
Adding the Drag Drop Plugin to a Grid Panel enables drag-drop handling specialized for grid
elements.

Grid View

A _Grid View encapsulates the user interface for a Grid Panel. An instance is automatically
added by Designer when you create a Grid Panel, so you should not normally need to cre-
ate one manually.

Menu Components Overview

Ext JS provides a set of Menu components that are used to build menus from Designer. To
build a menu bar, add a Button for each of menu to a Toolbar and then configure a Menu
component for each button. For more information about building menus, see Building
Menus. Following is an overview of Ext JS Menu components.

Check Item

A _Check Item is a specialized Menu ltem that includes a checkbox or radio button for tog-
gling a Menu Item on and off. If the group attribute is set, all items with the same group
name are treated as a single-select radio button group.

Color Menu
A Color Menu is a specialized Menu that displays a color picker widget.

Date Menu
A Date Menu is a specialized Menu that displays a date picker widget.

Menu

A Menu is a container for a collection of menu items.

Chapter 3: Component Overview Page 44

To create a menu, add a Menu to a Button component and then add Check Item, Menu
ltem, Separator, and Text Item components to the Menu.

A Menu can contain any type of component although it typically includes only standard
menu item components.

Menu ltem

A Menu Item is a standard selectable Menu option. It defines the text label for the item, and
an optional icon.

Separator

A Separator is a divider that can be added to a Menu. A Separator is typically used to sepa-
rate logical groups of menu items.

Standard Components Overview

Standard components provide the basic building blocks for your Ul. The following introduc-
es each of the Ext JS standard components.

Button

A Button can have an icon, text, or both. You can set a Button’s icon attribute to specify an
image to use for the button. To display both an icon and text, set the iconCls attribute to
specify the CSS class for the button’s icon element.

Buttons are also used to build menus—a menu is just a Button component that has a
nested Menu component. To create a menu bar, add a Button for each menu to a Toolbar,
and then configure a Menu component for each button.

In Designer, configure a menu by clicking a Button’s flyout configuration button, or manually
drag a Menu component onto the button.

Component

Component is the basis for all other components. It’s not usually used directly—instead it’s
more typical to use a Container or one of the other specialized Components such as a But-
ton or a Field.

Chapter 3: Component Overview Page 45

Cycle Button

A Cycle Button is a specialized Split Button that contains a group of Check ltems. A Cycle
Button automatically cycles through the items on click—when the user clicks an item, the
Button text is replaced with the text of the clicked item.

Img
The Img component displays an image from a given URL. Specify the URL by setting the
component’s ‘src” config property.

Progress Bar

A Progress Bar displays the progress of a task. Progress Bar supports two modes: manual
and automatic. Manual mode enables explicit updating of a task’s progress. When it’s
important to show progress throughout an operation that has predictable milestones, use
manual mode. Automatic mode enables the the progress bar to be displayed for a fixed
amount of time or to simply be run until it’s cleared. To display progress for a timed or asyn-
chronous task, use automatic mode.

Split Button

A Split Button is a specialized Button that has a built-in dropdown arrow that can fire an
event separately from the button’s click event. Cycle Button extends Split Button to enable
the user to cycle through a set of menu items.

Tool

A Tool is an icon button that can be added to a Panel’s header to allow certain types of ac-
tions. There are 25 defined Tool types; see the Tool APl documentation for details.

Toolbar

To create a toolbar that displays a collection of buttons, menus, or other controls, you add a
Toolbar component and then add the control components to the Toolbar. Toolbars are typi-
cally added to a Panel container, and can be docked to any of the panel’s edges by setting
the “Dock in parent” option in the Toolbar’s config flyout. The various Toolbar components
provided by Ext JS are:

Button Group

A Button Group is a specialized Panel container for a collection of buttons. Conceptually,
a Button Group is similar to a menu in that it contains a collection of related items the user
can choose from.

Any type of button can be added to a Button Group —Button, Cycle Button, or Split Button.
However, unlike a Menu, a Button Group can’t include other control components.

Chapter 3: Component Overview Page 46

Fill

A Fill is a specialized Spacer that can be added to a Toolbar when some components need
to be left-aligned and the remainder to be right-aligned. When a Fill is inserted between
Toolbar components, all components following the Fill will be right-aligned. For example,
inserting a Fill component between a Cancel Button and a Submit button to a Toolbar that
has buttonAlign set to left left-aligns the Cancel Button and right-aligns the Submit Button,
as shown above.

Paging Toolbar

A Paging Toolbar is a specialized Toolbar that provides controls for paging through large
data sets.

Paging Toolbar provides automatic paging control by loading blocks of data from a source

into a data Store. Set the pageSize attribute to specify how many items to be displayed at a
time. Paging Toolbar is designed to be used with a Grid Panel.

Separator

A Separator is a Toolbar item that places a divider between components in a Toolbar. A
Separator is typically used to separate logical groups of buttons in the Toolbar. Button
Group can also be used to group buttons.

Spacer

A Spacer is a Toolbar item used to insert an arbitrary amount of space between compo-
nents in a Toolbar. To control the amount of space, set the Spacer’s width attribute. To left-
align some Toolbar components and right-align the rest, use Fill instead of adding a Spacer.

Chapter 3: Component Overview Page 47

http://www.sencha.com/deploy/dev/docs/?class=Ext.Toolbar.Item

Text Item

A Text Item is a Toolbar item used to add a non-selectable text string to a Toolbar as a label
or heading.

Toolbar

Toolbar is a container for control components such as buttons and menus.

A Toolbar can be docked to any of a panel’s edges by setting the “Dock in parent” option in
the Toolbar’s config flyout. Typical uses for a Toolbar are to display a menu bar at the top of
a Panel, or to display buttons at the bottom of a dialog Window or Form Panel.

Tree Components Overview

Trees display hierarchical data in a list that can be expanded and collapsed. The basic Ext
JS tree building block is the Tree Panel container. A Tree Panel contains a root node and
any number of child nodes. You can bind a Tree Panel to a TreeStore. As changes happen
to the data in the TreeStore it will automatically be reflected in the Tree Panel.

Tree Panel

ATree Panel is a specialized Panel component for displaying hierarchical data in a collaps-
ible list. When a node is expanded, the Tree Panel will look to the TreeStore to look up ad-
ditional data and/or load the other preloaded data in the store.

Chapter 3: Component Overview Page 48

http://www.sencha.com/deploy/dev/docs/?class=Ext.Toolbar.Item

Views Overview

Views display dynamic data from a Store, with complete control over the formatting and
layout of the data through an_XTemplate. Here are the Ext JS View-related components:

Bound List

A Bound List is a simple View for displaying a set of data records in an unordered list. It is
used internally to generate the dropdown list for ComboBox fields, and is not normally used
directly on its own.

View

A View displays data from a_Store using an_XTemplate to format and lay out the data. When
data in the attached store changes, the View automatically updates. View provides built-in
support for common actions such as click and mouseover and supports both single and
multiple selections.

Because a View is a Component, it can be managed by its parent’s layout. Note that a View
isn’t a Panel component, however. A Toolbar can’t be directly attached to a View; instead it
needs to be wrapped in a Panel and docked to one of the Panel’'s edges.

Chapter 3: Component Overview Page 49

Chapter 4: Forms, Menus, and Trees

One of the main purposes of Designer is to make it easy to build complex Ul elements
with the components introduced in Chapter 3. This chapter will show how to use Designer
to build common Ul elements with Ext JS components. It covers how to build forms and
menus and how trees are populated with data in Ext JS 4. Designer simplifies these tasks
by enabling immediate visual feedback of the changes made to the UL.

Building Forms

This section shows how to build a simple form in Designer and attach an event handler for
form submission. It also shows how to add radio buttons and checkbox groups, arrange
multiple fields in a row, and create multicolumn forms.

Building a Simple Form

To create a form, start with a Form Panel container. A form’s submit and cancel buttons are
added to a Toolbar that is typically docked in the footer of the FormPanel. Once a form has
been laid out in Designer, the project is exported and the generated code can be edited to

attach event handlers for the submit and cancel buttons.

To get started with this, double-click Form Panel in the Toolbox to add a new top-level con-
tainer to the canvas. Edit the form title by double clicking the default title (‘My Form’) and
resize the panel by dragging its frame.

Next, add fields to the Form Panel. For example, double-click Text Field to add a text entry
field. Edit the field label by double-clicking the existing label.

Now drag a Toolbar into the Form Panel for the form’s submit and cancel buttons. Click the
flyout config button on the Toolbar and select “bottom” in the “Dock in parent” field. This will
display the toolbar below the form.

By default, buttons added to this Toolbar will be aligned to the left. Since we want to align
them to the right, we will first drag a “Fill” item onto the Toolbar.

Chapter 4: Forms, Menus, and Trees Page 50

Now, drag buttons into the Toolbar for the Submit and Cancel buttons, and edit their labels
by double-clicking the default label (‘MyButton’), like this:

The next steps are to add events to the project by editing the code generated by Designer.
To do this, first save and export the project. Look for the generated .js file for your form;
it will have a name like MyForm.js. After the initComponent call, specify the functions to
invoke when users click the Submit and Cancel buttons. The buttons will be selected using
ComponentQuery, which uses a CSS-like selector string to find the buttons in the compo-
nent subtree. The code should look something like the following:
Ext.define('MyApp.view.MyForm’, {
extend: ‘MyApp.view.ui.MyForm’,
initComponent: function() {
var me = this;
me.callParent (arguments);

me.down (‘button[text=Submit]’).on(’click’,
me.onSubmitBtnClick, me);

me.down (‘button[text=Cancel]’).on(‘click’,
me.onCancelBtnClick, me);

}
)i
Now, add the implementations for your submit and cancel handler functions to your form
class with code that looks like this:
Ext.define('MyApp.view.MyForm’, {
extend: ‘MyApp.view.ui.MyForm’,
initComponent: function() {
var me = this;
me.callParent (arguments);

me.down(‘button[text=Submit]’).on(‘click’,
me.onSubmitBtnClick, me);

me.down(‘button[text=Cancel]’).on(‘click’,
me.onCancelBtnClick, me);

bo

onSubmitBtnClick: function() {
// your implementation here!
}

onCancelBtnClick: function() {
// your implementation here!

}

})i

Chapter 4: Forms, Menus, and Trees Page 51

Changing the Width of Form Components

Form fields placed in Form Panel are automatically configured with an anchor of 100%. To
change the width of a field, clear the anchor attribute and set the width attribute (in pixels).

Adding a password field

Forms often provide at least basic security with a password. To create a password field, add
a text field to the form and set the field’s inputType attribute to password in the Component
Config inspector.

Adding a Group of Radio Buttons or Checkboxes

In Designer, you create a group of radio buttons or checkboxes by adding them to any type
of Ext JS container. In this case, use a FieldSet component. To restrict the user to selecting
only one of the buttons in a radio button group, set the same name attribute on each of the
buttons.

To add radio buttons for a Yes/No selection to the example form, start by dragging a Field-
Set container into the FormPanel. Then, drag two Radio Fields into the FieldSet, like this:

Since the buttons are contained within a FieldSet, the fieldLabels aren’t necessary. To hide
them, select each Radio and enable hidelLabels.

Next, double click the default label for each Radio (‘BoxLabel’) to set the text for the Yes
and No options. Set the name attribute of each Radio to the same name, for example
newsletter, as shown below. This will prevent both buttons from being selected at the same
time. To specify one of the buttons as the default, enable its checked attribute.

Chapter 4: Forms, Menus, and Trees Page 52

Arranging Fields in Multiple Columns

For a form with a large number of fields, it’s possible to arrange them in more than one col-

umn to minimize scrolling. To do this, use nested Containers within the Form Panel. Either a
particular section or the entire form can be layed out in multiple columns, depending on the
relationship between the form fields.

If you have several related checkboxes, for example, they could be arranged in multiple col-
umns to conserve space. To do this, add a FieldSet to the Form Panel for the checkboxes,

set the layout of the FieldSet to “hbox”, and set its height to a value that will accommodate

all needed checkboxes. For example, a height of 90 pixels will accommmodate three rows of
checkboxes.

Next add a Container component to the FieldSet for each column and set the Flex for both

to 1. (Note: It’s easiest to select the column containers from the Component list rather than
from the canvas.)

Now add checkboxes to each column container, remove their default fieldLabel values, and
set their boxLabel attributes. The form should now look something like the following:

Chapter 4: Forms, Menus, and Trees Page 53

Aligning Fields Horizontally

In some cases a group of related fields in a form need to be aligned on one line, instead of
in multiple columns, say for a multipart name field. To do this, use the FieldContainer com-
ponent. Start by adding a FieldContainer to the FormPanel.

Add two Text Fields to the FieldContainer, either by dragging them onto the FieldContainer
component itself or onto the FieldContainer item in the Components list. The following
shows the second method:

Finally, for each contained field, set the fieldLabel attribute and check the hidelL.abel option.
For the FieldContainer, remove the fieldLabel value and check its combinel.abels option.
The label will now be a comma-separated list of the labels for the child fields.

Populating a ComboBox
The items listed in a ComboBox are defined in a data Store. The easiest way to set up a
Store for a ComboBox is to create a local Array Store, as follows:

Choose Add ArrayStore from the Data Stores tab, then right-click the new Store and
choose Add Fields > 1 field, as shown here:

Give the field a name, for example, combolList. Next, specify the list of items to show in the
ComboBox as an array of arrays in the Store’s data attribute, for example:
[[“Search Engine’], [‘Online Ad’], [‘Facebook’]]

Chapter 4: Forms, Menus, and Trees Page 54

To use the local array Store to populate a ComboBox, select the Store from the flyout con-
figuration button on the ComboBox. Then configure the ComboBox to specify which field(s)
in the Store to use as the displayField and valueField, as shown here:

Finally, set the triggerAction attribute to “all” to display all of the available items in the Store
in the drop-down list. Set the ComboBox mode attribute to local.

Building Menus

Any Button can be turned into a menu by adding a Menu component to it and then add-
ing the menu items to the Menu component. As with any other Designer project, one the
component is complete, it's exported so that event handlers can be added to the generated
code.

To create a typical menu bar, start by dragging a Toolbar onto the canvas, then drag but-
tons onto the Toolbar for each menu. Start with just two buttons, although more can be
added if need be.

Next, edit the button labels to set the name of each menu, for example, MyApp and Tools.

Now add a Menu component and two menu items to each button. To do this, click the
button’s flyout config button and select Add to add a Menu component. This also automati-
cally adds a Menu ltem to the Menu. Click Add again to add a second item to the menu.
The same thing can be accomplished by dragging a Menu onto a button; similarly items like
Menu Item, Checkltem, Separator, and Textltem can be dragged onto the component.

Next, give each menu item a name to display in the menu. For example, set the items in the
MyApp menu to About and Preferences, and the items in the Tools menu to Import and
Export.

As with other components, the next step is to save, export, and add events. In the gener-

Chapter 4: Forms, Menus, and Trees Page 55

ated .js file created when Designer exports the project, at the end of the initComponent
method, select the menuitem components via ComponentQuery selectors and add click
event listeners to them. Finally, add the implementations for the handler functions. The result
is something like this:
Ext.define(‘MyApp.view.MyToolbar’, {

extend: ‘MyApp.view.ui.MyToolbar’,

initComponent: function() {

var me = this;

me.callParent (arguments);

// add event listeners:

me.down (‘menuitem[text=About]’).on(‘click’, me.onAboutItemClick,
me) ;

me.down (‘menuitem[text=Preferences]’).on(‘click’,
me.onPrefsItemClick, me);

me.down (‘menuitem[text=Import]’).on(‘click’, me.onImportItemClick,
me) ;

me.down (‘menuitem[text=Export]’).on(‘click’, me.onExportItemClick,
me) ;

by
// event handlers methods:
onAboutItemClick: function() {
// your implementation here!
}
onPrefsItemClick: function() {
// your implementation here!
},
onImportItemClick: function() {
// your implementation here!
o
onExportItemClick: function() {
// your implementation here!
}

})i

Creating Submenus

Creating submenus in Designer is simple—just add a Menu component to an existing menu
item and then add the submenu items. Attaching an event handler to a submenu item is just
like attaching a handler to any other menu item.

For example, to add a submenu to the Export menu item in the Menu Bar example, drag a
Menu component onto the Export menu item, either on the canvas or in the Components
tab.

Next add a Menu Item for each submenu item; for this example add one for PDF and one
for HTML.

Chapter 4: Forms, Menus, and Trees Page 56

Populating Trees

In projects targeting Ext JS version 3, trees are populated using TreeLoader. When a Tree
Panel is added to the canvas for Ext JS 3 projects, Designer automatically adds a root node
and a TreelL.oader and the TreelL.oader URL attribute needs to point to the location from
which to retrieve the node definitions.

This has changed with Ext JS version 4. Ext JS 4 does not include Tree Loader, and Tree
Panels no longer have to be loaded or populated. Instead, you bind Tree Panels to a
TreeStore. Any changes in the TreeStore will automatically be reflected in the Tree Panel.
You never interact directly with the Tree Panel and add/remove/move nodes, as you would
for Ext JS 3 projects. Instead, you add those records to the TreeStore.

Chapter 4: Forms, Menus, and Trees Page 57

Chapter 5: Component-Oriented Design

Designer makes it easy to use the standard Ext JS component building blocks to assemble
a Ul. Simply drag a container such as a Viewport or Window onto the canvas and start add-
ing components to it. That’s a simple way to start building a basic Ul. An application of any
complexity, however, needs to be organized into smaller pieces. This lets the development
team employ a more effective, efficient strategy in which the pieces of the application can
be designed, implemented, and maintained separately and more easily reused. This chapter
focuses on how to undertake such a component-oriented design approach using Designer.

Designer provides two mechanisms for facilitating component-oriented design:

» Components can specifically be added to a project as top-level components. For ex-
ample, top-level containers can be added to a project for each page or dialog.

» Any child component can be made into a top-level component with the Promote to
Class feature.

This makes it easy to refactor and reuse components as the application design comes
together.

A Designer project can contain any number of top-level components. As we’ve seen, when
Designer exports a project, it generates separate class files for each top-level component.
Designer creates base classes of the Ext JS components with all the configurations and
settings you’ve provided. These are the subclasses defined in the generated app/view/ui/*.
js files, which are overwritten every time a project is exported. In the corresponding app/
view/* js files, the preconfigured classes are extended so event handlers, additional con-
figurations and custom methods can be implemented in them. The app/view/*.js file for a
top-level component is created the first time it’'s exported, but it’s not overwritten on sub-
sequent exports. If you change the userClassName, Designer exports a new file with that
class name and previously generated files become obsolete.

In addition to generating more manageable code, organizing a Designer project as a collec-
tion of top-level components can make it easier to continue to develop the project with De-
signer. It can take a longer time to render large, deeply nested views on the canvas. Build-
ing main application views using other top-level components makes it possible to work on
those components individually. That way, the whole Ul doesn’t have to be re-rendered when

Chapter 5: Component-Oriented Design Page 58

each piece has been changed. By using linked instances within main application views, it’s
still easy to view all the top-level components in context.

Let’s look at the ways to create top-level components using Designer as well as techniques
for reusing top-level components.

Adding Top-Level Components

Designer provides several ways to add top-level components to projects:
» Without any components selected, double-click a component in the Toolbox.
» Drag a component from the Toolbox to any empty area of the canvas.
» Select New Component from the Component menu.

Remember that Window and Viewport containers can only be added as top-level compo-
nents.

To change the top-level component displayed on the canvas, simply select the component
in the Components tab to display it.

Promoting a Component to a Class

Any child item in the Components list can be promoted to a top-level component; top-level
components are exported as classes in their own Javascript file. For example, let’s look at
Grid Column components.

Grid columns can only be added to grid panels or tree panels when they are initially created
because they don’t serve any purpose own their own. However, at times it’s preferable to
have a grid column as its own Javascript class to override common behavior such as the
renderer.

To do this, first create a grid panel. A new grid panel will receive several columns by default.
Right-click the header of one of the columns and choose Promote to Class, like this:

The column becomes a top-level component and it is replaced with a representative linked
instance in the Components tab, like this:

Chapter 5: Component-Oriented Design Page 59

The same thing can be done in the Components tab. Instead of selecting the column
(“Boolean”) on the canvas, right-click it in the Components tab and select Promote to Class,
like this:

Just as in the previous example, the column will become
its own top-level component and be replaced by a linked
instance in the Components tab.

When Designer exports the project, it will generate the ap-
propriate Javascript files for the new top-level grid column
component. This technique works for any component in
the components list.

Use the Designer Promote to Class option to convert any
child component in a project to a top-level component.
When Designer promotes a child component, its place
in the Components tree is taken by a linked instance to
the promoted class, as just shown. Any changes made
directly on the linked instance will override the attributes
of the top-level component. Changes that should be
inherited by all linked instances should be made on the
top-level component. (For information about how to cre-
ate additional linked instances of a top-level component,
see Reusing a Top-Level Component, below.)

Dragging a child component to an empty area on the canvas also makes it a top-level
component. However, this moves the component to the top-level without creating a linked
instance. For example, drag a Panel from the Toolbox to the canvas, then drag a Grid Panel
and drop it on the Panel, and drop another Panel onto the first Panel. The second Panel ap-
pears as a child component of the first Panel (“MyPanel1”), like this:

Chapter 5: Component-Oriented Design Page 60

Now, drag the child Panel (“My Panel”) to an empty area of the canvas. It becomes its own
top-level component and will not create a linked instance within MyGridPanel1, as shown
here:

To see how Designer exports the project, switch to the code view for the component by
clicking the Code button. It shows that Designer would generate a single class for the Panel
(“MyPanel1”) and all of it’s sub-components, like this:

Chapter 5: Component-Oriented Design Page 61

To have Designer generate separate class files for each of the main components in the
Panel, use the Promote to Class feature as described earlier. Now each of the panels within
the Panel can be developed separately, and when Designer exports the project, separate
class files are generated for each panel.

Selecting a Linked Instance’s Class

You can select a linked instance to modify the attributes of the instance. To make changes
that would be inherited by all linked instances of a top-level component, make such chang-
es to the top-level component.

To select the class associated with a linked instance, right click the linked instance and
choose Select Linked Class, as shown below. Another way to do this is to double-click the
linked instance on the canvas or in the Components tab.

Setting a Top-Level Component’s xtype/alias and Class Name

When promoting a child component, Designer automatically generates an xtype/alias and
class name for the new class. The generated values can be changed and the linked in-
stances will be automatically updated to use the new settings. To change the generated
values, select the top-level component and set the userAlias and userClassName attributes
in the Component Config inspector.

Chapter 5: Component-Oriented Design Page 62

Reusing a Top-Level Component

When Designer promotes a component to a class, a linked instance is automatically created
where the component previously resided.

Designer also makes it easy to reuse components within your project by providing a way to
explicitly create a linked instance of any top-level component. Whenever a top-level compo-
nent is dragged into a container, Designer provides three options:

» Moving it to the new location.
» Creating a copy of it in the new location.
» Creating a linked instance in the new location.

For example, take a dialog that needs to use a standard OK/Cancel toolbar. In the Compo-
nents tab, drag the toolbar onto the dialog component.

Designer will ask whether to move, copy, or link the component with the following dialog.
Click Link.

The Components tab identifies the new child component as a linked instance.

Chapter 5: Component-Oriented Design Page 63

Linked instances of components can also be copied. To do so, right-click on the linked
instance and choose Duplicate. Designer will create a copy of the Toolbar, like this:

Chapter 5: Component-Oriented Design Page 64

Chapter 6: Working With Data Stores

Data Stores provide a client-side data cache for Ul components. An Ext JS Data Store
retrieves data from a source such as an XML file and makes the data available for display
within a Ul component such as a GridPanel, TreePanel, or ComboBox.

To do this, a Store uses a DataReader to read structured data from a source such as an
XML file or JSON packet and creates an array of Model instances (also known as Records)
that can be accessed by the Ul components. The read requests are handled by a_Data-
Proxy that knows how to access the source and pass the data to the DataReader.
The general process for setting up a Data Store include the following:

» Specifying the data format and where it’s located

» Mapping fields in the data source to the fields that will be made available to Ul compo-
nents

» Configuring the Ul components to use the fields that display the data

This chapter provides specific techniques for working with Ext JS Data Stores in Designer.

Using Data Stores in Designer

To display data in a Ul component using a Data Store, first select the type of Store that
matches the format of the source data. Next, specify the location where data will read from
in the Proxy’s url attribute and add fields to the Data Store and map them to the source
data. Then load the data into the Data Store and configure the Ul component to use spe-
cific fields from the Data Store. Let’s take a closer ook at each of these steps.

Choosing a Store Type

Designer provides choice between several types of Data Stores. Each type defines the kind
of DataReader and DataProxy that will be used to retrieve and parse data from the source.
The choices are as follows:

» Json Store—retrieves data from a JSSON packet using a JsonReader and HttpProxy.
» Array Store—retrieves data from a local array using an ArrayReader and MemoryProxy.

Chapter 6: Working With Data Stores Page 65

http://www.google.com/url?q=http%3A%2F%2Fdocs.sencha.com%2Fext-js%2F4-0%2F%23%2Fapi%2FExt.data.Store&sa=D&sntz=1&usg=AFQjCNGGizr_1dTKkBrlja5OEGue__PnTw
http://www.google.com/url?q=http%3A%2F%2Fdocs.sencha.com%2Fext-js%2F4-0%2F%23%2Fapi%2FExt.data.Store&sa=D&sntz=1&usg=AFQjCNGGizr_1dTKkBrlja5OEGue__PnTw
http://www.google.com/url?q=http%3A%2F%2Fdocs.sencha.com%2Fext-js%2F4-0%2F%23%2Fapi%2FExt.data.Store&sa=D&sntz=1&usg=AFQjCNGGizr_1dTKkBrlja5OEGue__PnTw

» XML Store—retrieves data from an XML file using XmIReader and HttpProxy.

» Direct Store—retrieves data from a server-side Provider using a JsonReader and Di-
rectProxy.

Note: Not mentioned above are the Tree Stores, which are specifically used in Tree Panels.

To add a Store in Designer, select the Data Stores tab and choose the type of store, as
shown here:

Cross-Domain Requests

An HttpProxy can only retrieve data from within the
same domain. This means that a Json Store or XML
Store can’t be created to get data from a remote
source. Creating cross-domain requests requires use of
a JsonP Proxy; this is currently not available in Designer.

Specifying the Location of the Source Data

When Designer creates a store, the location of source data needs to be specified. The
location specified in a Proxy’s url attribute is relative to the URL prefix that’s specified in the
project’s preferences.

To set the URL prefix for a project, select Project Settings... from the Edit menu. Then, enter
the URL prefix that should be prepended to the url attributes specified for individual compo-
nents, like this:

Next, specify the location of the source data for a Store by selecting the Store’s Proxy in the
Data Stores tab and setting the Proxy’s url attribute to point to the source data.

For most Store types, the root attribute needs to be set on the DataReader to tell the reader
the name of the property from which to read the data, like this:

Chapter 6: Working With Data Stores Page 66

Mapping Data Fields
The next step is to add a field to the Store for each element that needs to load from the
source. Right-click the store in the Data Stores tab and select Add Fields and the number to

add to the store, as follows:

Chapter 6: Working With Data Stores Page 67

Then, give each field a name by setting its name attribute, as shown here:

By default, each field in the data source is mapped to a field of the same name in the source
data. However, a field can be mapped to any arbitrary source field by specifying the map-
ping attribute in the field configuration. For example, you could drop underscores, change the
capitalization from the way it appears in the source data, or map to a field with a completely

different name.

To map a field to a source field of a different name, select the field in the Data Stores tab and
set the field’s mapping attribute to identify the source data to map to the field, as shown here:

The format for a data read from the source field can also
be controlled through Designer. For example, to display
the contents of a date field in a specific format, specify
the dateFormat attribute in the field configuration. This is
a PHP-style date formatting string, for more information
about this, see Date.

Similarly, the sortType attribute can be set to control how
the field is treated when sorting. Do this by specifying one
of the predefined_SortType functions or by defining and
using a custom sort function.

Loading Data into a Store

To automatically load data into a Store, enable its auto-
Load attribute. This causes the store’s load method to be
called automatically when it’s created. If the data cannot
be read from the source, an error message is displayed
that contains the location where Designer expected to find
the source data. If autolL.oad is not enabled, an application
needs to explicitly call load on the store to load data.

Chapter 6: Working With Data Stores

Page 68

Binding a Store to a Ul Component
Once a Data Store has been set up, binding it to a Ul component to display the data is easy
using the same techniques introduced earlier in this guide. Here’s how to do it.

Click the flyout config button on the component and select the Data Store you want to use
from the list for that component, in the example shown here, ‘MyStore1’:

Next, configure the component to use the data from the store. This varies depending on the
type of component. For example, for a grid panel set the datalndex of each column to the
field to be displayed, as shown below in an example from the Car Listings example Ul built
in Chapter 1. Note that the data is displayed immediately when datalndex is set.

For a ComboBox, specify the displayField and valueField attributes to correspond to the ap-
propriate fields in the Data Store.
The data should display immediately in the Ul component. If it doesn’t, do the following:

» Make sure the store can be loaded. The most common problem is incorrectly specify-

Chapter 6: Working With Data Stores Page 69

ing the path to the data.

» Check the Data Store configuration. Have you defined the fields you’re trying to dis-
play? If needed, is the root specified correctly?

» Check the component configuration. Have you correctly specified which fields you
want to display?

Data Store Examples

The following examples show how to create a Data Store in Designer and connect it to vari-
ous types of source data.

Using a Json Store
Follow these steps to use a Json Store.

Create the Json file that contains the data to be loaded into the Ul. For this example, create
a file called customers.json that contains the following data:

Save the customers.json file on the host specified by the project’s URL Prefix. For example,
if the URL prefix is set to http://localhost, make the file available at http://localhost/data/
customers.json.

In Designer, go to the Data Stores tab and select Add Json Store. Set the root attribute of
the Reader to customers. This matches the name of the array specified in the Json file that
contains the data you want to load.

Set the Reader’s idProperty attribute to name. Set the Proxy’s url attribute to the location of
the source file on the host specified by the project’s URL Prefix. Since the Json store has
been saved in the data directory on localhost, set the url attribute to data/customers.json.

Right-click the Store component and select Add Fields > 3 fields—one for each of the
name:value pairs to access from the elements in the customers array. Set the name of the
first field to name. Set the name of the second field to age and set it’s type to int. Setting
the field type enables the field to be sorted correctly. Set the name of the third field to zip-
code. Since this is different from the name used to reference this value in the Json file, the
field’s mapping attribute also needs to be set, in this case to zip.

With the Store selected, right-click and choose Load data. When the data is successfully
loaded from the source, a status message indicating the number of fields loaded is dis-
played in the Data Stores tab. If the data cannot be loaded, an error message displays that
includes the URL from which Designer attempted to load the data.

Now, bind the Json Store to a Ul component using the process just discussed and use the
fields in the Store to dynamically load data into the component.

Chapter 6: Working With Data Stores Page 70

http://localhost/
http://localhost/
http://localhost/
http://localhost/
http://localhost/data/customers.json
http://localhost/data/customers.json
http://localhost/data/customers.json
http://localhost/data/customers.json
http://localhost/data/customers.json
http://localhost/data/customers.json
http://localhost/data/customers.json
http://localhost/data/customers.json
http://localhost/data/customers.json
http://localhost/data/customers.json

Using an Array Store
Here’s how to use an Array Store in Designer.

Create a file that contains the array data to load in the Ul. For this example, create a Json
file called contacts.json that contains the following data:
[
[“Ace Supplies”, “Emma Knauer”, *“555-3529"],
[“Best Goods”, *“Joseph Kahn”, *“555-8797"],
[“First Choice”, “Matthew Willbanks”, *“555-4954"]
]

Save the contacts.json file on the host specified by the project’s URL Prefix. For example, if
the URL prefix is set to http://localhost, make the file available at http://localhost/data/con-
tacts.json.

In Designer, go to the Data Stores tab and select Add Array Store. Set the Reader’s idIn-
dex property to 0. This indicates that the first element in each row array (the contact name)
should be used as the index.

Set the Proxy’s url attribute to the location of the source file on the host specified by the
project’s URL Prefix. Since the Json file has been saved in the data directory on localhost,
set the url attribute to data/contacts.json.

Right-click the Store component and select Add Fields > 3 fields—one for each element
the application needs to reach from the row arrays in the source file. Name the three fields
name, contact, and phone.

With the Store selected, right-click and choose Load data. When the data is successfully
loaded from the source, a status message indicating the number of fields loaded is dis-
played in the Data Stores tab. If the data cannot be loaded, an error message displays that
includes the URL from which Designer attempted to load the data.

Finally, bind the new Array Store to a Ul component and use the fields in the Store to dy-
namically load data into the component.

Using an XML Store
Here’s another example, this one showing how to use an XML store.

Create an XML file that contains the data to load into the Ul. For this example, create a file
called products.xml that contains the following data:
<?xml version="1.0" encoding="UTF-8"?2>
<Products xmlns="http://example.org”>
<Product>
<Name>Widget</Name>
<Price>11.95</Price>
<ImageData>
<Url>widget.png</Url>
<Width>300</Width>
<Height>400</Height>
</ImageData>

</Product>

Chapter 6: Working With Data Stores Page 71

http://localhost/
http://localhost/
http://localhost/
http://localhost/
http://localhost/data/customers.json
http://localhost/data/customers.json
http://localhost/data/customers.json
http://localhost/data/customers.json
http://localhost/data/customers.json
http://localhost/data/customers.json
http://localhost/data/customers.json
http://localhost/data/customers.json
http://localhost/data/customers.json
http://localhost/data/customers.json
http://localhost/data/customers.json

<Product>
<Name>Sprocket</Name>
<Price>5.95</Price>
<ImageData>

<Url>sc.png</Url>

<Width>300</Width>
<Height>400</Height>
</ImageData>
</Product>
<Product>

<Name>Gadget</Name>
<Price>19.95</Price>
<ImageData>
<Url>widget.png</Url>
<Width>300</Width>
<Height>400</Height>
</ImageData>
</Product>

</Products>

Save the products.xml file on the host specified by the project’s URL Prefix. For example, if
the URL prefix is set to http://localhost, make the file available at http://localhost/data/prod-
ucts.xml.

In Designer, go to the Data Stores tab and select Add XmlIStore. Set the Proxy’s url attribute
to the location of the source file on the host specified by the project’s URL Prefix. Since

the XML file has been saved to the data directory on localhost, set the url attribute to data/
products.xml.

Set the Reader’s record attribute to the name of the XML element that contains the data to
load, in this case Product.

Right-click the Store and select Add Fields > 3 fields—one for each of the sub-elements to
access for each Product. Set the name of the first field to name and its mapping attribute
to Name. Note that the mapping is case sensitive and must match the element name. Set
the name attribute of the second field to price, its mapping attribute to Price, and its type
to float. Set the name attribute of the third field to imageUrl and the mapping attribute to
ImageData > Url. Note that this uses a DomQuery selector to access the Url sub-element
of ImageData.

Make sure the Store is selected and right-click and choose Load data. When the data

is successfully loaded from the source, a status message indicating the number of fields
loaded is displayed in the Data Stores tab. If the data cannot be loaded, an error message
displays that includes the URL from which Designer attempted to load the data.

Finally, bind the new Store to a Ul component and use the fields in the Store to dynamically
load data into the component.

Chapter 6: Working With Data Stores Page 72

http://localhost/
http://localhost/
http://localhost/
http://localhost/
http://localhost/data/customers.json
http://localhost/data/customers.json
http://localhost/data/customers.json
http://localhost/data/customers.json
http://localhost/data/customers.json
http://localhost/data/customers.json
http://localhost/data/customers.json
http://localhost/data/customers.json
http://localhost/data/customers.json
http://localhost/data/customers.json
http://localhost/data/customers.json

We hope this has helped you learn how to use Sencha Ext Designer.

For additional resources and materials, please visit www.sencha.com/learn/

	Table of Contents
	Introduction
	Chapter 1: Getting Started with Designer
	Navigating Designer
	Toolbox
	Canvas
	Components tab
	Component Config Inspector
	Data Stores Inspector
	Shortcuts

	Anatomy of a UI created with Designer
	Laying Out UI Components
	Adding Components
	Positioning Components
	Layout Options
	Configuring Components
	Using Templates
	Connecting to Data
	Exporting a Project
	Attaching Event Handlers to UI Components
	Additional Information
	Chapter 2: Working with Layouts
	Basic Container Layouts
	Auto
	Absolute
	Accordion
	Anchor
	Border
	Card
	Column
	Fit
	Table
	Hbox
	Vbox

	Nested Layouts
	Flexible Box Layouts
	Stretching Components to Fit
	Configuring the Layout for a Container
	Using CardLayout to Create a Wizard
	Using Border Layout for a Viewport
	Using hbox Layout to Create Multiple Columns
	Chapter 3: Component Overview
	Adding Components to a UI
	Containers Overview
	Container
	FieldContainer
	FieldSet
	Form Panel
	Panel
	Tab Panel
	Viewport
	Window

	Charts
	Chart Axis Overview
	Category Axis
	Gauge Axis
	Numeric Axis
	Radial Axis

	Chart Series Overview
	Area Series
	Bar Series
	Column Series
	Gauge Series
	Line Series
	Pie Series
	Radar Series
	Scatter Series

	Chart Legend
	Form Fields Overview
	Checkbox
	Checkbox Group
	ComboBox
	Date Field
	Display Field
	File Upload
	Hidden Field
	HTML Editor
	Label
	Multi Slider
	Number Field
	Radio
	Radio Group
	Slider
	Text Area
	Text Field
	Time Field
	Trigger Field

	Grids Overview
	Grid Panel
	Property Grid
	Editing
	Grid Columns
	Action Column
	Action Column Item
	Boolean Column
	Column
	Date Column
	Number Column
	Template Column
	Grid Features
	Grouping Feature
	Grouping Summary Feature
	Row Body Feature
	Summary Feature
	Grid Selection
	Cell Selection Model
	Checkbox Selection Model
	Row Selection Model
	Drag Drop Plugin
	Grid View

	Menu Components Overview
	Check Item
	Color Menu
	Date Menu
	Menu
	Menu Item
	Separator

	Standard Components Overview
	Button
	Component
	Cycle Button
	Img
	Progress Bar
	Split Button
	Tool
	Toolbar
	Button Group
	Fill
	Paging Toolbar
	Separator
	Spacer
	Text Item
	Toolbar

	Tree Components Overview
	Tree Panel

	Views Overview
	Bound List
	View

	Chapter 4: Forms, Menus, and Trees
	Building Forms
	Building a Simple Form
	Changing the Width of Form Components
	Adding a password field
	Adding a Group of Radio Buttons or Checkboxes
	Arranging Fields in Multiple Columns
	Aligning Fields Horizontally
	Populating a ComboBox

	Building Menus
	Creating Submenus

	Populating Trees
	Chapter 5: Component-Oriented Design
	Adding Top-Level Components
	Promoting a Component to a Class
	Selecting a Linked Instance’s Class
	Setting a Top-Level Component’s xtype/alias and Class Name
	Reusing a Top-Level Component
	Chapter 6: Working With Data Stores
	Using Data Stores in Designer
	Choosing a Store Type
	Cross-Domain Requests
	Specifying the Location of the Source Data
	Mapping Data Fields
	Loading Data into a Store
	Binding a Store to a UI Component
	Data Store Examples
	Using a Json Store
	Using an Array Store
	Using an XML Store

	h.nycmko5cjnc
	h.ecssbbnsivng
	h.49j632kypbkb
	h.e7jcblccju61
	h.uzc5xdulb89
	h.ruz78lad7fih
	h.27m3apm4z5cw
	_GoBack
	h.1quxu35ow6q2
	h.qngf0dkkpmng
	h.xa6szoprxtv6
	h.16hohtlqakm2
	h.xojpqp2524t
	h.oytav6kebim5
	h.6mjhf5nwyufh
	h.61dbcpd132qk
	h.c4lgbc9eej7q
	h.h355xjaasdy5
	h.w1kxxeodrfo1
	h.gmlmpsvohuyh
	h.r1baryfu6hi9
	h.b0q231ww23i1
	h.a5sjmtsxc4f4
	h.lowbakgwdoro
	h.ykqvo26lk1hg
	h.8h0tgpje67p1
	h.syp631gavemi
	h.s5x1pakjjhby
	h.kryudrch34ir
	h.9hryv9srua9h
	h.v34btt1a0oa4
	h.lb3ki5v712ug
	h.cmvzf87q4dkb
	h.8yapzq3jqa49
	h.je8ehv26328k
	h.3tyhg4qf1q44
	h.tmxeubfd3taz
	h.ut2chnvn8lgy
	_GoBack
	h.dodyyv5kd63g
	h.9hkzv638kmzd
	h.dxq3n2n9f2ym
	h.b2cx3u4tbujw
	h.xgbf141to87r
	h.21mzvbl10z3u
	h.gs2hqzn8sua
	h.tvy46b1ultxe
	h.6hixqbdf0vc1
	h.4wtsvitasv5l
	h.id6dbkd24h5k
	h.8im5dgcdzlp9
	h.ugd2d6j5wtd1
	h.o8f8kjgf15zh
	h.6gfd6y35i8um
	h.pei0xcx5za
	h.ebzcr82pvnxy
	h.341fs9upruf5
	h.8r3j65mccl0j
	h.2i2jh0ek7fg1
	h.e97vhd3o5sj5
	h.b63z2lpmeyps
	h.66uc3au17k5u
	h.jbxdy5ujxbc4
	h.dfkzzq3ato5g
	h.4fq6ve7sks9e
	h.zc0xjp28gycd
	h.muf3krqc9raw
	h.wtf9wr2cvxeb
	h.r0bi4sviqq4g
	h.vl6vqpodffeo
	h.ta3t6pzckqfz
	h.o86scqal665e
	h.468jg340lurp
	h.hxt9ykta15e3
	h.j6myqejc7p11
	h.6yc06kezk7qg
	h.s39o9kp7ht2
	h.ivbko5f249vn
	h.isyck2t7i4br
	h.hh7xq8qaluk5
	h.ukpnjgsz4mm
	h.1w9czme8yv5z
	h.qhzlneasrin5
	h.jfmcikaflu32
	h.eddbzm4fnbav
	h.6er1xg76h24g
	h.e2qkqnnla6q7
	h.2eq6q345hs59
	h.tzx02i9dmi25
	h.qeokfwmowb0u
	h.v5wk9gtv8zot
	h.cs7rbzcaukoh
	h.ew9db8acm1c
	h.ahk2r7i49pt3
	h.f054jkos4qa8
	h.hdvor0kdijmz
	h.ljevy0ejycn4
	h.wsk9kjgl9vcp
	h.tehgbq5z21rc
	h.dph5wushmgh
	h.u1q9aronsuue
	h.opib05b5ng3x
	h.3hj5zsd0vxcw
	h.5jwv4635yof6
	h.4wesz5nxajc5
	h.mwpvtanrm577
	h.hs7ywc3z07yo
	h.m7xxrji0kpgh
	h.n5iql0lprxe8
	h.awxy634vkf18
	h.oky07d6ed7u
	h.shvuldrb40h5
	h.s1pphwnqlgtv
	h.keypwssnx6p7
	h.gxghqjxmoi50
	h.q58pmj99mew5
	h.wh83444fp13q
	h.86vubxoc6nfm
	h.ca2odjnig6gg
	h.9zt9v5gmvtek
	h.8hz0g1p7ed3k
	h.t3yk4kuanje
	h.htuxgxiq71xw
	h.yj4cj6737lae
	h.nk1lpvogcbw1
	h.5o85sore85o
	h.jzett8q5t8oq
	h.ls75jj5fh0b
	h.gjjq3o7l4qwq
	h.7h4nkpzf0k0v
	h.i9o2rwcagx
	h.4t3ugzhghp5v
	h.e92v4pa9e5vl
	h.ql32t4qlodnd
	h.yguho6jtpfns
	h.avwojw9fpvl9
	h.8h5bengp7had
	h.aemzm2d8z2fs
	h.j0urqwu0w1oq
	h.orgugglsw679
	h.z6k1vnoqdp8i
	h.uqt6akls4fdh
	h.1hb00ht0uv9r
	h.t9lefcc7hc35
	h.8bgsmyo827e2
	h.l6gep3hf5ek9
	h.m76ceuvu8ekx
	h.5her3fuwyc01
	h.f8wgs4flcgt6
	h.nai6jjwv10ou
	h.a9lp5eeo6y5y
	h.tg5nsplblwe5
	h.i708kk16cnd5
	h.chy851t2xreu
	h.7slaenwiiwp8
	h.gemza4zfghna
	h.j2pj99z7o96k
	h.szpfxc614m5w
	h.5ct6utx9s21y
	h.owdhdfhgrjoa
	_GoBack

